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EXECUTIVE SUMMARY 
The overall goal of this project is to review the existing predictive models and available 
TRANSCOM data in order to identify operations models that can best predict traffic impacts 
when a non-recurrent incident or event occurs. The selection process of these models is 
primarily driven by the needs of the TRANSCOM stakeholders as well as the available 
TRANSCOM data.  

This project was comprised of four main tasks: The first task was a detailed literature review 
which relates to the development of data-driven predictive delay models for non-recurrent 
traffic congestion. The second task was to interview TRANSCOM stakeholders and to identify 
their needs for the development of a non-recurrent impact (delay) model. The third task was a 
detailed review of TRANSCOM data to help identify the most appropriate modeling approach, 
given the availability of TRANSCOM’s historical as well as real-time data. The last task was to 
provide recommendations based on the findings of the previous tasks. The advantages and 
disadvantages of the recommended approaches are described using examples of their potential 
operations use cases. Moreover, this document provides the system requirements for an ideal 
predictive tool for non-recurrent traffic incidents (Section 5). This document also provides the 
assessment for development and implementation of recommended models (Section 6). 

In this report, a detailed review of large number of past studies found in the literature is 
presented. The search identified any predictive operations models that can work with 
TRANSCOM data.  Given this requirement, there was a limit on the possibilities of using off-the-
shelf existing models. For example, many existing models require real-time traffic volume as 
one of the critical inputs; the lack of traffic volume in the TRANSCOM data limits the use of 
many of the existing models. 

As a result of this review, the team could not identify any predictive delay model that would be 
compatible with the TRANSCOM data and that is currently being used by operational staff on a 
real-time basis. Given the feedback received from interviews with TRANSCOM stakeholders and 
available TRANSCOM data, this report recommends one model for each type of prediction task 
namely, impact duration prediction, traffic delay prediction/estimation, and queue length 
prediction. 

For models predicting traffic impact duration, we recommend Demiroluk and Ozbay’s (1) 
Bayesian network model. Their model can work with available TRANSCOM data and provide 
reasonable predicted results. Specifically, Demiroluk and Ozbay’s (1) model is able to predict 
incident duration when there is very limited information available to traffic operators. Their 
model can also work with missing data and provide a predicted distribution of incident 
durations.  

For incident delay prediction/estimation, we recommend a travel time prediction model 
developed by Yu (2) since it has the highest accuracy among all reviewed models. For the queue 
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length prediction, we recommend Ghosh’s model (3) for predicting real-time queue length with 
reasonable accuracy using TRANSCOM’s travel time data only. 

Additional details of the recommended models have been provided in Section 4 of this report.  

Based on the details of the recommended models, we propose and design a predictive tool for 
non-recurrent traffic incidents. Section 5 explains the properties of an ideal prediction tool and 
provides details about the designed functionalities and system requirements.  

Lastly, this document includes a preliminary assessment for development and implementation 
of the recommended models. For each model, time requirements and development efforts for 
the calibration, validation and implementation are identified in Section 6. Finally, the last 
section provides a tentative timeline of the system development in steps.  
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Introduction and Study Objectives 
 
The main goal of this document is to provide a detailed review of the previous models that 
were developed to predict non-recurrent traffic delay according to the task descriptions given 
in the scope of work. The scope of work is defined as listed below.  
 
Task 1:  Literature Review (Completed) 

 Apply a comprehensive process that will focus on the review of the most recent 
predictive approaches that take advantage of big data from various sources.  

Task 2:  Interviews with TRANSCOM Stakeholders (Completed) 
 Conduct a minimum of four face-to-face interviews that can be supplemented by 

several one-on-one phone interviews. 
 MTA B&T, PANYNJ, NYSTA, NYSDOT, NYCDOT, MTA NYCT, NJ Transit, NJDOT and 

NJ Turnpike. 
Task 3:  Detailed Review of TRANSCOM Data (Completed) 

 Determine geographical scope (ICM 495 corridor)  
 TRANSCOM’s historical traffic and event data will be obtained with the goal of 

identifying the most appropriate modeling approach(es). 
Task 4:  Final Recommendations and Final Report (Completed) 

 Provide a final recommendation in the form of a final report that clearly 
documents findings of above tasks 

Task 5:  Project Management 
 Meetings, quarterly and final reports, and other project management tasks 

 
As mentioned above, in addition to the literature review, a detailed review of the TRANSCOM 
data for the ICM 495 corridor shown in Figure 1 below was conducted with the ultimate 
objective of determining the minimum data and ideal dataset requirements and providing 
recommendations.  
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Figure 1. ICM-495 Corridor and Alternate Roadways from NJ Turnpike to JFK.  
(Source: https://www.nymtc.org/portals/0/pdf/presentations/MMN-ITS_ICM_Presentation_MM.pdf) 
 
 
It is essential to emphasize further that our final recommendations will be made with a clear 
understanding that developed models will be used by operators at a Traffic Management 
Center to manage an incident in the best way possible. This has a few critical implications 
including the need for the models to: 
1) work with existing real-time data;  
2) be computationally efficient in order to produce almost instantaneous predictions;  
3) generate easy to understand and disseminatable predictions;  
4) adaptive to real-world changes as the incident removal operations progress. In the rest of 
this document, we provide a detailed review of relevant impact duration-delay estimation 
models. 
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Overview 
A non-recurrent traffic incident comprises of four distinct intervals: detection, response, 
clearance, and recovery. This definition (4) is consistent with the incident timeline, which starts 
when an incident occurs, identifies key interim activities, notes when clearance of the roadway 
occurs and ends with traffic returning to normal conditions. Figure 2 shows the timeline of the 
elements of a typical traffic incident management operation. 

 

Figure 2. Timeline of the elements of a traffic incident. 

 
At the operations level, when an incident occurs, operators first need to know how long this 
incident will last. This is the point where traffic impact duration prediction models are needed 
to provide an estimated impact duration. The availability of duration information will allow 
operators to assess the potential impacts of the incident. Next, operators need to quantify the 
traffic impact of the incident in order to make operations decisions. This is the point where 
traffic delay estimation models can help to provide traffic impact information, including traffic 
delay, the increase of travel time, and queue length. Figure 3 shows a general operations 
flowchart of a non-recurrent traffic incident. 
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Figure 3 General operations process for a non-recurrent traffic incident event. 

 
In the literature review, impact duration prediction and traffic delay estimation models are 
considered separately. This document has seven main sections. The first section is the literature 
review of traffic impact duration prediction models. This section categorizes models under five 
types of modeling approaches (regression, classification tree, Bayesian network, artificial neural 
network, hazard-based model). The second section is the literature review of traffic delay 
estimation/prediction models. This section divides delay estimation/prediction models into two 
categories, analytical and data-driven models. For each model under both categories, we 
provide a brief description of the modeling methodology, data needs, and detailed information 
about model evaluation in terms of their performance and advantages/disadvantages of using 
them. At the end of each subsection, a brief summary of models will also be provided. The 
summary includes an individual model performance comparison, compatibility of model data 
requirements compared with the data in the TRANSCOM database as well as highlights of each 
model. 
The third section is a detailed data analysis towards the selected estimation models. This 
section analyzed and described the available TRANSCOM data by providing data fields, data 
quality check and potential usage for selected estimation models.  
The forth section of this document provides a final recommendation of candidate models and 
the comparison between TRANSCOM data and data needs of these recommended models. In 
the fifth section, this document proposes an “ideal data-driven predictive non-recurrent 
duration / delay estimation framework” based on the outcomes of literature review study. The 
sixth section provides a preliminary assessment of development and implementation of 
recommended models. In the last section, this document proposes a timeline for the 
development of designed systems. 
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1.Traffic impact duration prediction 
Impact duration prediction is one of the most critical steps of the overall incident management 
process. An accurate and reliable prediction of the impact duration can be the main difference 
between an effective incident management operation versus an unacceptable one. When a 
traffic incident occurs, a fast and accurate prediction will affect the effectiveness of the overall 
decision-making process of incident management operators. Thus, computationally efficient 
models that can work in real-time is a vital requirement.  
To predict impact duration, there is a wide range of approaches that are proposed in the 
literature. This document divides these approaches into five main categories: 

1. Regression-based models 
2. Classification Tree Method (CTM) based models 
3. Artificial neural networks 
4. Machine-learning (Bayesian networks, SVM) based models 
5. Hazard-based duration models 
 

Table 1 below is a summary of duration prediction models reviewed in this task. It also provides 
each model’s data compatibility with respect to TRANSCOM data. During the literature search 
task, data needs of reviewed models and their compatibility with data received from 
TRANSCOM were considered. We use three levels to represent models’ data compatibility with 
TRANSCOM data: 

1. Low compatibility: TRANSCOM data covers less than 40% of the data needs of a model, 
or TRANSCOM data does not have some fundamental inputs required by a model for its 
real-time operations use. For instance, many analytical models that attempt to estimate 
delay require real-time traffic volume. 

2. Medium compatibility: TRANSCOM data does not currently cover some of the data 
requirements for real-time use of a model but it is expected that some of the missing 
data will be obtained at a later stage. For example, incident operation data such as the 
number of police vehicles involved cannot be reported to the operators instantaneously 
but can be updated/provided as the incident moves on. 

3. High compatibility: TRANSCOM data covers most of the data needs of a model.  

 

Table 1 Summary of traffic impact duration prediction models 
 Model TRANSCOM 

data 
compatibility 

Highlights – 

Regression 
models 

Khattak et al., 
1995 (1.1.1) 

Low Statistical regression, sequential/real-time model, 
operations, unreliable 

Garib et al., 
1997 (1.1.2) 

Medium Statistical regression, one-time model, not 
operations, unreliable 

Peeta et al., 
2000 (1.1.3) 

Low Statistical regression, one-time model, not 
operations, unreliable 
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Khattak et al., 
2016 (1.1.4) 

High Statistical regression, sequential/real-time, 
operations, too simplistic and too many 

categorical variables 
Yu and Xia et 

al., 2012 
(1.1.5) 

Low Statistical regression, one-time model, not 
operations, unreliable 

Weng et al., 
2015 (1.1.6) 

Low Statistical regression, one-time model, 
probabilistic, not operations, reliable 

Classification 
Tree 

Methods 

Ozbay and 
Kachroo, 1999 

(1.2.1) 

Low Classification tree, sequential model, real-time 
prediction 

Smith et al., 
2002 (1.2.2) 

Low Classification tree, sequential model, bad 
performance, not operations, real-time, unreliable 

Knibbe et al., 
2006 (1.2.3) 

Low Classification tree, sequential model, simple, not 
operations, real-time, unreliable 

He et al., 2013 
(1.2.4) 

Medium Classification tree, sequential model can extend to 
real-time model, operations, interpretable, 

reliable 
Zhan et al., 
2011 (1.2.5) 

Low Classification tree, can extend to real-time model, 
deal with missing values, operations, unreliable 

Artificial 
neural 

network 

Wei and Lee, 
2007 (1.3.1) 

High Artificial neural network, provide immediate and 
updated duration, operations, one-time and real-

time capable, reliable 
Park et al., 

2016 (1.3.2) 
Medium Artificial neural network, probabilistic, 

interpretable, one-time model, reliable 
Bayesian 
networks 

Ozbay and 
Noyan, 2006 

(1.4.1) 

Medium Bayesian network, interpretable, capture 
stochasticity, sequential model, operations, 

reliable 
Boyles et al., 
2007 (1.4.2) 

High Bayesian network, interpretable, capture 
stochasticity, sequential model, operations, 

unreliable 
Ji et al., 2008 

(1.4.3) 
Low Bayesian network, deal with missing data, 

sequential model, not operations, reliable 
Shen and 

Huang, 2011 
(1.4.4) 

Low Bayesian network, interpretable, capture 
stochasticity, sequential model, not operations, 

reliable 
Demiroluk and 

Ozbay, 2014 
(1.4.5) 

Medium Bayesian network, interpretable, adaptive 
learning, sequential model, real-time prediction, 

operations 
Hazard-based 

model 
Qi and Teng, 
2008 (1.5.1) 

High Hazard-based model, three-stage model, provide 
immediate and updated duration, operations, 

reliable 



16 
 

SVM Yu et al., 
2016(1.6.1) 

Low Support vector machine, interpretability, one-time 
model, not operations, reliable 

 

1.1 Regression model-based impact duration prediction models 

Traffic researchers applied several well-known statistical methods to predict the traffic impact 
duration. Regression is one of the most popular statistical approaches used for this goal. There 
are a few studies that applied regression models for the duration prediction problem in the 
literature. 

1.1.1 A simple time-sequential procedure for predicting freeway impact duration. Khattak et al. 
(1995) 

In one of the earliest academic studies, Khattak et al., 1995 (5) developed a truncated 
regression model and applied it using a time-sequential methodology. They predicted impact 
duration as the TMC receives the incident information based on a dataset of 109 large-scale 
incidents. In this study, it is assumed that the relationship between impact durations, 𝑦𝑦, and 
independent variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 is of the form: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖 = 𝛽𝛽′𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖 
Where 𝑖𝑖 refers to the 𝑖𝑖 the observation; the set of 𝑛𝑛 observations can be denoted as: 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖 
Where: 
𝑌𝑌 =  Vector of 𝑛𝑛 dependent variable observations on impact duration 
𝑋𝑋 =  Matrix of 𝑘𝑘 independent variables and 𝑛𝑛 observations 
𝛽𝛽 =  Vector of k parameters 
𝜖𝜖 =  The error term with expected value zero and variance 𝜎𝜎2 
 
This study then applied several truncation points 𝜏𝜏 ∈ (10,15,20,25,30 𝑚𝑚𝑚𝑚𝑚𝑚) to compare model 
performance under different truncation points.  

𝑦𝑦𝑖𝑖 = 𝛽𝛽′𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖    >      𝜏𝜏0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑎𝑎𝑎𝑎𝑎𝑎  
𝑦𝑦𝑖𝑖 = 𝛽𝛽′𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖    ≤        𝜏𝜏0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

In this way, the truncated regression model can receive input data in time-sequential order.  
 
Data needs 
Traffic data: Traffic flow conditions for the time of day and day of the week 
Incident data: Incident type, vehicle type, number of vehicles involved, injuries and fatalities, 
state property damage. 
Operations data: Response times, number of rescue vehicles, whether a heavy wrecker was 
needed if sanding/salting was done because of a spill/ice on the pavement, whether other 
agencies such as medical services and owners of the vehicles involved provided assistance, 
whether incident information is disseminated to motorists or not. 
Time data: Time when incident is detected, time when incident is cleared, month of the year. 
Location data: Freeway where the incident occurred, distance from the city center. 
Weather data: Rainy or dry 
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Highlights 

Advantages Disadvantages Model performance 
• Can deal with time-

sequential data and 
provide real-time 
impact duration 
prediction.  

• Considers ten distinct 
stages of impact 
duration based on the 
available information. 

 

• Developed using a 
minimal data set, and it 
is questionable that it 
will work under various 
real-world conditions.  

 

• Not tested under real-
world conditions due to 
the lack of actual field 
data. 

 

 

1.1.2 Estimating magnitude and duration of incident delays. Garib et al. (1997) 

Garib et al., 1997 (6) introduced a statistical model for predicting impact duration using a linear 
regression model. They estimated the model using 205 incidents and claimed that their model 
reported adjusted R-square value as 81%. The input variables include the number of lanes 
affected, number of vehicles involved, truck involvement, time of day, police response time, 
and weather condition. The estimated model is shown below: 

𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 0.87 + 0.27𝑋𝑋1𝑋𝑋2 + 0.2𝑋𝑋5 − 0.17𝑋𝑋6 + 0.68𝑋𝑋7 − 0.24𝑋𝑋8 
Where: 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = impact duration in minutes 
𝑋𝑋1 = number of lanes affected by the incident 
𝑋𝑋2 = number of vehicles involved in the incident 
𝑋𝑋5 = dummy variable representing truck involvement in the incident 
𝑋𝑋6 = dummy variable representing the time of day 
𝑋𝑋7 = natural logarithm of the police response time in minutes 
𝑋𝑋8 = dummy variable representing weather condition. 
 
Data needs 
Traffic data: None. 
Incident data: Incident type, number of lanes affected, vehicle type, vehicle color. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Direction of an incident, lanes affected, upstream/downstream to the nearest 
exit. 
Operations data: Time of police arrival, number of tow trucks. 
Weather data: Rainy or dry. 
 

Model Highlights 
Advantages Disadvantages Model performance 
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• Simple and easy to use 
for operation purpose. 

 

• Cannot deal with time-
sequential data. 

• Cannot provide real-
time impact duration 
prediction. 

• Developed using a 
minimal data set (205 
incidents), and it is 
questionable that it will 
work under various 
real-world conditions.  

 

• Best adjusted R2: 81% 

 

 

1.1.3 Providing real-time traffic advisory and route guidance to manage Borman incidents 
online using the Hoosier helper program. Peeta et al. (2000) 

Peeta (7) estimated a linear regression model to estimate the clearance time of one incident 
using 835 crashes and 1176 debris (debris on the roadway). A simple linear regression model 
with four categories of explanatory variables was estimated: incident severity (including 
number of vehicles, trucks), incident lateral location variables (including locations on-ramp, 
median, left lane), environmental condition variables (such as night, temperature, vision) and 
current traffic condition variables (such as rush hour). Their linear regression model was 
estimated for both crashes and highway debris. The statistical performance was reported as 
𝑅𝑅2 = 0.234 for crashes and 𝑅𝑅2 = 0.362 for debris. The model for predicting the duration of 
crashes is shown below: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒)
= 12.774 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂 + 7.349 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 2.930 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +   18.055 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
+ 4.496 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 9.095 ∗ 𝐿𝐿𝐿𝐿 + 15.846 ∗ 𝐶𝐶𝐶𝐶 + 9.780 ∗ 𝑅𝑅𝑅𝑅 + 16.596
∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.065 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.136 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉 + 32.842 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 13.571
∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 6.527 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 1.150 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

Where:  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒) = Predicted impact duration that is caused by crashes 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = number of vehicles involved in the incident 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = if the incident occurred on the median 
𝐿𝐿𝐿𝐿 = if the incident occurred on the left lane 
𝐶𝐶𝐶𝐶 = if the incident occurred on the center lane 
𝑅𝑅𝑅𝑅 = if the incident occurred on the right lane 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = if the incident occurred on the freeway ramp 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =high intensity rain 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = low-intensity rain 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = if snowing during the incident clearance process 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = if the incident clearance process occurs at night 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = if a truck is involved in the accident 
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Data needs 
Traffic data: Traffic volume, average traffic speed 
Incident data: Incident type, vehicle type, number of vehicles involved, percentage of trucks at 
the time of incident. 
Operations data: number of emergency crew at the time of incident, type of equipment used, 
number of equipment used, whether incident information is disseminated to motorists or not. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: None. 
Weather data: Rain or snow 
Light conditions: Night or daytime. 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

 

• Cannot deal with time-
sequential data. 

• Cannot provide real-
time impact duration 
prediction. 

• Developed using a 
minimal and biased 
data set (only two types 
of incidents), and it is 
questionable that it will 
work under various 
real-world conditions.  

 

• Best R2: 0.234 

 

1.1.4 Modeling traffic impact duration using quantile regression. Khattak et al. (2016) 

Khattak (8) developed dynamic impact duration models and provided better prediction results 
than his previous models due to the capability of integrating additional information into the 
dynamic models. Their approach was based on ordinary least squares (OLS) regression models 
and able to predict primary and secondary impact durations.  
They claimed that dynamic impact duration models predict impact duration more accurately 
since different time stages will support successively more information as incident progress. 
They tested both OLS and truncated regression models (their previous study) and claimed that 
truncated regression models under-predicted impact durations, especially when longer 
duration incidents were involved. The OLS regression model is shown below: 
𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛽𝛽0 + 𝛽𝛽1(𝑇𝑇𝑇𝑇𝑇𝑇) + 𝛽𝛽2(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) + 𝛽𝛽3(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) + 𝛽𝛽4(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

+ 𝛽𝛽5(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝛽𝛽6(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) + 𝛽𝛽7(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + 𝛽𝛽8(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
+ 𝛽𝛽9(𝐸𝐸𝐸𝐸𝐸𝐸) + 𝛽𝛽10(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 𝛽𝛽11(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 𝛽𝛽12(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) + 𝜖𝜖 

Where: 
𝛽𝛽 = estimated parameters 
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𝜖𝜖 = error term 
𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = impact duration (minutes) 
𝑇𝑇𝑇𝑇𝑇𝑇 = time of day incident occurred 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = is the bad weather or not 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = incident location 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = average annual daily traffic  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = incident detection source 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿 = number of vehicles involved in the incident 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = incident type 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = whether traffic lane was closed or not 
𝐸𝐸𝐸𝐸𝐸𝐸 = emergency medical service was present or not 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = the right shoulder affected by the incident 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = the left shoulder affected by the incident 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ramp affected by the incident 
 
The input information will be updated as traffic operation center (TOC) is involved, and new 
prediction based on new input data will be provided. 
 
Data needs 
Traffic data: AADT, detection source 
Incident data: Incident type, number of vehicles involved. 
Operations data: Whether response agencies are involved or not. 
Time data: Time when incident is detected, time when incident is cleared, the peak time of day. 
Location data: Location of the incident, number of lanes closed, whether left/right shoulder is 
affected, whether a ramp is affected. 
Weather data: Whether severe weather or not. 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Can deal with time-
sequential data. 

• Can provide real-time 
impact duration 
prediction. 

• Can predict both 
primary and secondary 
impact durations. 

• Developed using a large 
dataset (59804 
incidents). 

 

• The model has low 
accuracy. 

 

• Best MAPE: 37%. 
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1.1.5 A methodology for freeway impact duration prediction using computerized historical 
database. Yu and Xia. (2012) 

Yu and Xia (9) proposed a linear model with stepwise regression. Their model could generate a 
preliminary prediction of impact duration when limited information about the incident is 
known. They then compared their proposed model with a more traditional linear model and 
claimed a more precise and dynamic prediction result by their model. 
In their study, they provided a simple linear model shown below: 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 54.4 × exp(0.63𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒 + 0.147𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 0.263 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

Where 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = predicted the impact duration 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒 =  whether rain or not 
𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = number of vehicles involved in the incident 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = number of lanes blocked due to the incident  
 
Before using their data to estimate a linear model, their distribution estimation results 
indicated that their traffic incident followed a log-normal distribution and vehicle assistance 
data followed a logistic distribution. They then estimated the accumulative probability of log-
normal and logistic distribution using historical data. To overcome the lack of available data, 
they introduced a stepwise procedure. They aggregated the cumulative probability distributions 
of different variables and used them to infer missing input data. They claimed that when more 
incident data becomes available, their model will provide more accurate predictions since the 
fitness of the estimated distribution would be improved with additional new data. 
 
Data needs 
Traffic data: None 
Incident data: Incident type, number of vehicles involved, vehicle type, severity and fatality, 
property damage 
Operations data: Response time for the relief station, travel time for the relief station, process 
time for an incident 
Time data: Time when incident is detected, time when incident is cleared, day of the week, 
time of day 
Location data: Number of lanes closed 
Weather data: rainy or dry 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Can deal with time-
sequential data. 

• Can provide real-time 
impact duration 
prediction. 

• Developed using a 
minimal and biased 
data set (only 503 
incidents), and it is 
questionable that it will 

• Best prediction error for 
duration less than 60 
minutes: 77.8%. 
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• Can deal with missing 
data. 

• Can provide better 
prediction with updated 
incoming data. 

 

work under various 
real-world conditions.  

 

1.1.6 Cluster-based lognormal distribution model for accident duration. Weng et al. (2015) 

Weng and his colleagues, (10) developed a cluster-based log-normal distribution model to 
predict accident duration. They first used a decision tree approach to split the entire dataset 
into three clusters, which are then treated as additional variables in modeling accident 
duration. 
In their study, they modeled impact duration as a random variable which follows a log-normal 
distribution. Their decision tree method adopted F-test as the splitting criterion, and a detailed 
variable selection procedure was provided. The lognormal distribution model is as below based 
on 2512 incidents data: 

ln 𝑦𝑦 = 2.49 − 0.16𝑥𝑥1 − 0.03𝑥𝑥3 + 0.07𝑥𝑥4 + 0.13𝑥𝑥5 − 0.19𝑥𝑥6 + 0.17𝑥𝑥7 + 4.6 × 10−5𝑥𝑥8
+ 0.10𝑥𝑥12 + 0.98 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 + 1.22 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 1.60 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 + 𝜖𝜖 

𝜖𝜖~𝑁𝑁(0,𝜎𝜎2) 
Where 

𝜎𝜎2 = 0.25𝑥𝑥1 + 0.66 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 + 0.33 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 0.29 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 =  �1   𝑖𝑖𝑖𝑖 𝑥𝑥3 ≤ 2,
0  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 =  �1   𝑖𝑖𝑖𝑖 𝑥𝑥3 > 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥2 ≤ 2,
0   𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 =  �1   𝑖𝑖𝑖𝑖 𝑥𝑥3 > 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥2 > 2,
0  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 
 
Data needs 
Traffic data: Traffic volume, traffic speed. 
Incident data: Severity and fatality, property damage, number of vehicles involved. 
Operations data: Number of notifications sent from operation center, number of responders 
on the scene. 
Time data: Time when incident is detected, time when incident is cleared, day of the week, 
time of day. 
Location data: Number of lanes closed. 
Weather data: Rain, wind and visibility. 
 

Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Need to predetermine 
the form of prediction 
distribution. 

• Best MAPE: 34.1%. 
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• Can provide predicted 
probabilistic 
distribution of impact 
duration. 

 

• Cannot deal with time-
sequential data. 

• Cannot provide real-
time prediction. 
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1.1.7 Summary of Regression-Based Duration Models 

For regression-based models, one common property is that the implementation of models can 
be straightforward. However, most of the regression models require additional information 
that is not currently available in the TRANSCOM data set provided to the research team. 
Moreover, most of the regression models are estimated using a limited number of incidents, 
which reduces their reliability and thus makes them unsuitable for real-world operations. In this 
study, the emphasis is on operations use, reliability, and ability to dealing with sequential data. 
Therefore, the model from Khattak et al., 2016 appears to be a better-suited model among all 
the regression-based models reviewed in this section. 
 

Table 2 Summary of regression-based duration prediction models 
Regression-based duration prediction models 

Model Performance TRANSCOM 
Data 

Compatibility 

Highlights 

Khattak et 
al, 1995 

Not test Low Sequential/real-time model, operations, 
unreliable 

Garib et 
al, 1997 

Best Adj. R2: 81% Medium One-time model, not operations, unreliable 

Peeta et 
al, 2000 

Best R2:0.234 Low One-time model, not operations, unreliable 

Khattak et 
al, 2016 

Best MAPE: 37% High Sequential/real-time, operations, reliable 

Yu and 
Xia, 2012 

Best prediction 
error for duration 
less than 60 
minutes: 77.8%. 

Low One-time model, not operations, unreliable 

Weng et 
al, 2015 

Best MAPE: 34.1% Low One-time model, probabilistic, not 
operations, reliable 
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1.2 Classification Tree Method (CTM) based impact duration prediction methods 

There are several studies that employed classification tree-based methods for the impact 
duration prediction.  

1.2.1 Incident Management in Intelligent Transportation Systems. Ozbay and Kachroo. (1999) 

Ozbay and Kachroo (11) were among the first researchers to recognize that the non-
homogenous nature of the impact duration data interferes with the ability to use traditional 
linear regression for model estimation. They reported that the impact duration values did not 
follow either a lognormal or log-logistic distribution. They then employed the classification tree 
to estimate the impact duration. 
 
Data needs 
Traffic data: None. 
Incident data: Incident type, whether heavy vehicles are involved or not, severe injuries and 
fatalities, property damage or not. 
Operations data: Whether heavy wrecker is used or not, whether assistance from response 
agencies is needed or not. 
Time data: Time of day, day of week. 
Location data: Total number of lanes, number of closed lanes, whether shoulders exist or not. 
Weather data: Extreme weather or not. 
 

Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Can provide real-time 
predictions. 

• Assumed log-normal 
distribution instead of 
general Gaussian 
distribution. 

• Requires low 
computation efforts. 

• Developed using a 
minimal data set.  

 

• Best correct 
classification rate: 60%. 

 

1.2.2 Forecasting the clearance time of freeway accidents. Smith et al. (2002) 

Smith et al. (12) investigated three forecasting models that can predict the clearance time of a 
freeway accident, namely, a stochastic model, nonparametric regression model, and a 
classification tree model. However, the results in this paper indicate that the classification 
models are not promising, they also do not show a meaningful performance improvement from 
the nonparametric regression models. Figure 4 shows the classification tree model diagram 
presented in this paper. 
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Figure 4 Classification tree model. Breiman et al. (13). 
 

Data needs 
Traffic data: None. 
Incident data: Number of vehicles, whether trucks are involved or not, whether buses are 
involved or not. 
Operations data: Whether agencies response or not (EMS, police, FIRT, hazardous material 
agency, VDOT), whether tow trucks involved or not. 
Time data: Time of day, day of week. 
Location data: None. 
Weather data: Severe weather or not. 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Can provide real-time 
predictions. 

• Can deal with time-
sequential data. 

 

• Model performance is 
not satisfactory with 
only 58% correct 
classification rate.  

• Best correct 
classification rate: 58%. 
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1.2.3 Automated estimation of impact duration on Dutch highways. Knibbe et al. (2006) 

Knibbe et al. (14) proposed a classification tree method for real-time impact duration 
estimation. In this approach, sequences of decision trees are constructed and used for 
determining the expected duration interval of an incident. Table 3 shows the decision tree’s 
main parameters in this paper. This approach can also be used for real-time impact duration 
estimation. 
 

Table 3 Main parameters for incident classification. Knibbe et al. (14). 
 

Main Parameters Used For Incident Classification 

Incident 

Accident 
Passenger car No casualties 
 Casualties 
Truck No casualties 

Stopped vehicle 

 Casualties 
Passenger car Malfunction 
 Fire 
Truck Malfunction 

Load 
 Fire 
- - 

 
Data needs 
Traffic data: None. 
Incident data: Incident type, vehicle type, number of vehicles involved, property damage. 
Operations data: Whether response agencies are involved or not (Police, ambulance, road 
manager, fire department), whether tow trucks are involved or not, whether repair service is 
required or not, whether a police investigation is required or not, Type of towing required, 
whether traffic control is required or not.  
Time data: Time of day, day or week. 
Location data: None. 
Weather data: None. 
 

Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Can provide real-time 
predictions. 

• Can deal with time-
sequential data. 

 

• Model performance is 
not satisfactory. 

 

• Best correct 
classification rate: 29%. 
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1.2.4 Impact duration prediction with hybrid tree-based quantile regression. He et al. (2013)  

He et al. (15) used a hybrid tree-based quantile regression method, which incorporates the 
merits of both quantile regression modeling and tree-structured modeling. The implementation 
in this paper was based on the software provided by the developers of this method (Hothorn et 
al. 2011). Significance levels for the test statistics were set to conventional levels (0.05) as 
suggested in Hothorn et al. (2006). There were two unbiased recursive partitioning (URP) trees 
with different sets of predictors. The first one, called URP tree1, shown in Figure 5, was created 
using all candidate variables. The second one (URP) was obtained using all but traffic variables 
and is depicted in Figure 6. Specifically, URP tree2 is a subset of URP tree1 that did not contain 
traffic data variables. The decision path of the tree model was followed by answering a yes or 
no question at each node. 

 

Figure 5 URP tree1 (with traffic data). He et al. (15) 
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Figure 6 URP tree2 (without traffic data). He et al. (15) 
 
Data needs 
Traffic data: Average speed, average traffic volume, average occupancy 
Incident data: Incident type, number of vehicles involved, severities and fatalities, property 
damage 
Operations data: None 
Time data: Time of day, day of week 
Location data: Whether a ramp exists, whether happened on highway 
Weather data: Rain or snow 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Can provide real-time 
predictions. 

• Can deal with time-
sequential data. 

 

• Model performance is 
not satisfactory. 

 

• Best MAPE: 49.1%. 
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1.2.5 Prediction of lane clearance time of freeway incidents using the M5P tree algorithm. Zhan 
et al. (2011) 

Zhan et al (16) proposed an M5P tree algorithm for lane clearance time prediction. This 
algorithm can work with categorical and continuous variables as well as variables with missing 
values.  
Figure 7 shows the three significant steps for M5 tree development: 1) tree construction; 2) 
tree pruning; and 3) tree smoothing. The M5 tree construction process attempts to maximize a 
measure called the standard deviation reduction (SDR). The SDR is defined as 

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑠𝑠𝑠𝑠(𝑇𝑇)  −  �
|𝑇𝑇𝑖𝑖|
|𝑇𝑇|

𝑖𝑖

× 𝑠𝑠𝑠𝑠(𝑇𝑇𝑖𝑖) 

Where 𝑇𝑇 is the set of cases, 𝑇𝑇𝑖𝑖 is the ith subset of cases that result from the tree splitting based 
on a set of variables (attributes), 𝑠𝑠𝑠𝑠(𝑇𝑇) is the standard deviation of 𝑇𝑇, and 𝑠𝑠𝑠𝑠(𝑇𝑇𝑖𝑖) is the 
standard deviation of 𝑇𝑇𝑖𝑖 as a measure of error. 

 

Figure 7 M5 tree flowchart. Zhan et al. (16). 
 
The developed M5P regression tree model is shown in Figure 8. The regression sub-models [see 
(LM1)–(LM5) in Figure 8] are listed as follows: 

LM1 ∶ τ (Y, λ) = 2.912 + 1.117 × NumRRAssists − 0.09 × TMCResponse
+ 0.091 × TMCVerification + 0.892 × Injury − 0.999 × ShoulderAvailable
+ 2.093 × hasFullBlockage + 0.542 × Weekend + 0.908 × Tractor
+ 1.602 × Truck − 0.496 × DisabledVehicle − 0.372 × CCTV
+ 0.023 × DMSCount 

LM2 ∶ τ (Y, λ) = 5.219 + 1.997 × NumRRAssists − 0.154 × TMCResponse
+ 0.887 ×  TMCV erif ication + 4.875 × SIRV + 12.104 × BUS
+ 3.613 × Tractor 
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LM3 ∶ τ (Y, λ) = 7.142 − 4.971 × ShoulderAvailable + 1.694 × NumRRAssists
− 0.155 × TMCResponse + 2.752 × Weekend + 0.080 × DMSCount
+ 7.017 × BUS + 7.025 × Emergency + 1.825 × Illumination
+ 2.080 × Rollover + 0.393 × VehicleCount + 2.826 × HasFullBlockage
+ 1.629 × Tractor 

LM4 ∶ τ (Y, λ) = −330.463 + 2328.506 × TotalActivities + 2058.012 ×  Injury
− 1649.351 × NumRRDispatches + 4103.359 × SIRV + 1743.637 × I595E
+ 851.413 × Weekend − 68.838 × TMCResponse
+ 60.161 × TMCVerification 

LM5 ∶ τ (Y, λ) = 5.581 + 2.095 × NumRRAssists − 2.466 ×  ShoulderAvailable
− 3.436 × Midday + 1.735 × Rollover − 3.422 × PM − 2.285 × AM
+ 1.989 × Tractor − 0.087 × TMCResponse + 4.554 × Truck 
+  0.581 × TotalLanes + 2.276 × Fire + 0.915 × Injury 

 

 

Figure 8 M5P regression tree for lane clearance time prediction. Zhan et al. (16). 
 

Data needs 
Traffic data: None 
Incident data: Incident type, vehicle type, number of vehicles involved, injury and fatalities. 
Operations data: Response times from the operation center, whether response agencies 
involved or not (such as Road ranger, Highway patrol), whether detected by CCTV or not, 
whether dynamic message sign (DMS) activated or not, number of on-site assists by the road 
ranger, number of on-site assists performed by agencies 
Time data: Time of day, day of week, time when incident is detected, time when incident is 
cleared 
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Location data: Total number of lanes, number of lanes closed, whether shoulders exist or not 
and whether shoulders blocked or not. 
Weather data: Rainy or dry, severe weather or not. 
Visibility data: Clear or foggy. 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Simple and easy to use 
for operation purpose. 

• Provides real-time 
predictions. 

• Deals with time-
sequential data. 

• Deals with missing data. 

 

• Model performance is 
not satisfactory. 

 

• Best MAPE: 42.7%. 
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1.2.6 Summary of Classification Tree Method (CTM) models 

Most of classification tree methods require incident attributes such as severity, number of 
vehicles involved, and incident operation condition. This type of data is not provided in 
TRANSCOM database. Moreover, most CTM models do not have good classification rates. 
 

Table 4 Summary of Classification Tree (CTM) based Impact duration Methods  
Classification Tree (CTM) based Impact duration Methods 

Model Performance TRANSCOM 
Data 

Compatibility 

Highlights 

Ozbay and 
Kachroo, 

1999 

Correct rate: 
60% Low Sequential model, real-time prediction 

Smith et al, 
2002 

Correct rate: 
58% Low Sequential model, bad performance, not 

operations, real-time, unreliable 
Knibbe et 
al, 2006 

Correct rate: 
29% Low Sequential model, simple, not operations, 

real-time, unreliable 
He et al, 

2013 MAPE: 49.1% Medium Sequential model can extend to real-time 
model, operations, interpretable, reliable 

Zhan et al, 
2011 MAPE: 42.7% Low Can extend to real-time model, deal with 

missing values, operations, unreliable 
 

1.3 Artificial neural network-based impact duration methods 

1.3.1 Sequential forecast of impact duration using Artificial Neural Network. Wei and Lee. 
(2007) 

Wei and Lee (17) used an Artificial Neural Network (ANN) as well as data fusion technique to 
build a multi-period forecast model for predicting the impact duration. They proposed two 
types of impact duration models (Model A and B) to perform forecasts in impact duration. 
When an incident is noticed for the first time, they used Model A to perform a preliminary 
forecast of the impact duration. After the incident, Model B takes over from Model A to 
perform forecasts with updated data. Model A and B together provide a sequential forecast for 
the impact duration. Their study only considers the car accident data for modeling building and 
evaluation. The model structure is as follows: 
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Figure 9. Impact duration forecast flowchart. Wei and Lee (17). 
 

Data needs 
Traffic data: Traffic volume, traffic speed. 
Incident data: Incident type, vehicle type, number of vehicles involved. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Location of the incident, whether an interchange exists between the incident 
and the detector, whether a toll plaza or service area exists between the incident and the 
detector, the distance between the incident and detector locations. 
Weather data: None. 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Provides real-time 
prediction (both 
immediate and updated 
prediction). 

• The model is trained 
with a minimal and 
biased dataset (only 
one incident type and 
39 incidents). 

• Best MAPE: 29%. 

 



35 
 

• Deals with time-
sequential data. 

 

• Requires heavy 
computation effort and 
time-consuming. 

 
 

1.3.2 Interpretation of Bayesian neural networks for predicting the duration of detected 
incidents. Park et al. (2016)  

Park et al (18) introduced a Bayesian neural network model to predict the impact duration. 
They applied Monte Carlo algorithm to update BNN parameters and adopted a pedagogical rule 
extraction algorithm (TREPAN) to extract decision trees to explain potential relationships 
present in incident nature. In other words, they combined a Bayesian neural network model 
with decision tree technique to provide both predictive and explanatory impact duration 
results. The methodology is as follows: 
 

 

Figure 10 Structure of the Bayesian neural network. Park et al. (18) 
 
During the implementation of the Bayesian neural network, they applied hybrid Monte Carlo 
(HMC) to sample the posterior distribution to get predictive results. They then applied TREPAN 
to extract rules from Bayesian neural network models and form a decision tree to interpret the 
predicted impact duration as follows: 
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Figure 11 Extracted decision tree from Bayesian neural network. Park et al. (18). 
 
Data needs 
Traffic data: Travel time before and after the incident occurrence. 
Incident data: Incident type, number of vehicles involved, vehicle type, severities, and fatalities. 
Operations data: Type of operations center agencies, whether the incident clearance is 
operated by highway response team or police department, type of response equipment 
involved. 
Time data: Time of day, time when incident is detected, time when incident is cleared. 
Location data: Number of lanes closed. 
Weather data: Snow or rain. 

Highlights 
Advantages Disadvantages Model performance 

• Provides interpretable 
results. 

• Provides probabilistic 
distribution of 
predicted duration. 

 

• Require heavy 
computation effort 
(Monte-Carlo 
simulation) and time-
consuming. 

 

• Best MAPE: 18%. 
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1.3.3 Summary of Artificial Neural Network models 

For artificial neural network models, one significant property is that they can achieve high 
accuracy by training historical dataset. Both of the two selected models can provide immediate 
duration prediction when an incident is detected/reported. Furthermore, Wei and Lee’s model 
can update the model itself by occupying the second ANN model and read in upcoming data to 
provide an accurate incident prediction. One drawback of ANN models is that it usually requires 
heavy computation, which may lead to a low prediction frequency and cannot be used for real-
time operations. 
 
 

Table 5 Summary of artificial neural network models 
Artificial neural network models 

Model Performance TRANSCOM 
Compatibility 

Highlights 

Wei and 
Lee, 2007 

Best MAPE: 
29% 

High Provide immediate and updated duration, 
operations, one-time and real-time capable, 
reliable 

Park et al, 
2016 

Best MAPE: 
18% 

Medium Probabilistic, interpretable, one-time and real-
time capable, reliable 

1.4 Bayesian Network-based impact duration prediction methods 

1.4.1 Estimation of incident clearance times using Bayesian Networks approach. Ozbay and 
Noyan. (2006) 

Ozbay and Noyan (19) were the first researchers to use Bayesian Networks (BNs) to model the 
incident clearance durations. Considering the stochastic variation and presence of incomplete 
information of incident data, BNs is a powerful modeling and analysis tool to create dynamic 
impact duration estimation trees because of its three main advantages, which are bi-directional 
induction, incorporation of missing variables and probabilistic inference. BNs consist of two 
components, one is a directed acyclic graph, and the other is the probability distribution over a 
set of random variables. By learning over the space of possible graph structures and model 
parameters with the relationships suggested by the data, a Bayesian scoring algorithm is used 
to find the BN that maximizes the scoring criterion. The BN with the highest score is shown in 
Figure 12. Figure 13 shows the conditional probability distributions for some of the variables in 
this BN. Through rigorous validation of the estimated trees using real-world data set collected 
in Northern Virginia, the prediction methodology is shown to be fully capable of representing 
the stochastic nature of incidents. 
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Figure 12 BN structure: nodes and arcs. Ozbay and Noyan (19). 

 

Figure 13 Posterior conditional probability distributions of the nodes. Ozbay and Noyan (19) 
 

Data needs 
Traffic data: None. 
Incident data: Incident type, injuries and fatalities, number of vehicles involved, vehicle type. 
Operations data: Number of response agencies involved. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Type of roadway, number of lanes. 
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Weather data: None. 
 

Highlights 
Advantages Disadvantages Model performance 

• Provides real-time 
predictions. 

• Deals with time-
sequential data. 

• Deals with missing data. 
• Captures the stochastic 

nature of incidents. 
• Provides interpretable 

results and easy for 
operations use. 

 

• Needs to be improved 
by testing various prior 
distributions on the 
decision variable. 

 

• Accuracy rate: 80%. 

 

1.4.2 A naïve Bayesian classifier for impact duration prediction. Boyles et al. (2007) 

Boyles et al. (20) developed a probabilistic model based on a naïve Bayesian classifier (NBC) for 
prediction of impact duration. The proposed model can readily accommodate incomplete 
information or information received at different points in time, both of which are 
characteristics of the incident management process. Similar to other classifiers, NBC can 
calculate the probability of our objective belonging to a discrete set of categories, conditioning 
on the observed attributes. The final result of the objective is typically assigned to the category 
with the highest probability. In the context of impact duration prediction, the observed 
attributes correspond to observable incident characteristics, such as number of injured persons, 
number of blocked lanes, location of the incident, weather conditions, and so on. The NBC 
classifies incidents into one of three categories: those lasting less than half an hour, between 
half an hour and an hour, and longer than an hour. The proposed model includes sixty-two 
attributes. When applied to the validation set, the results of NBC classifier are compared with a 
linear regression model. The validation results showed that NBC can provide a more 
straightforward, more flexible, and more useful approach than the regression model without 
scarifying prediction accuracy. 
 
Data needs 
Traffic data: None 
Incident data: Incident type, injuries and fatalities, number of vehicles involved, vehicle type, 
property damage 
Operations data: None 
Time data: Time when incident is detected, time when incident is cleared 
Location data: Type of roadway, number of lanes affected 
Weather data: None 
 

Model Highlights 
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Advantages Disadvantages Model performance 
• Provides real-time 

predictions. 
• Provides robust 

prediction to outliers 
than regression models. 

• Captures the stochastic 
nature of incidents. 

• Provides interpretable 
results and easy for 
operations use. 

 

• Model performance is 
not satisfactory with 
the correct classification 
rate of 50%. 

• Cannot provide a 
distribution of impact 
duration. 

 

• Correct classification 
rate: 50%. 

 

1.4.3 Traffic impact duration prediction based on the Bayesian decision tree method. Ji et al. 
(2008) 

Ji et al. (21) presented a prediction model based on a Bayesian decision tree model to estimate 
traffic impact duration. This model is defined as a Bayesian decision tree model because 
Bayesian nodes are inserted into the generic decision tree model, as shown in Figure 14. Each 
Bayesian node contains a value which is either “0” or “f”. If the characteristic object 
information is complete, the value of Bayesian node is “0” and there are no calculations. 
However, if the object characteristic is missing, the value of Bayesian node will be set to “f” and 
need to be calculated later. The proposed model is capable of dealing with “dirty” traffic 
incident data, which may contain incomplete or inconsistent information. The theoretical 
accuracy of this model is higher than traditional classification tree models. 

 

 

Figure 14 Illustration of Bayesian decision tree model. Ji et al. (21)  
 
Data needs 
Traffic data: None. 
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Incident data: Incident type, vehicle type, property damage. 
Operations data: Whether roadway is closed or not, whether response agencies involved or not 
(police, road manager, tow truck). 
Time data: Time when incident is detected, time when incident is cleared, day of week. 
Location data: None. 
Weather data: None. 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Provides real-time 
predictions. 

• Provides robust 
prediction to outliers 
than CTM models. 

• Captures the stochastic 
nature of incidents. 

• Deals with missing data. 
• Provides interpretable 

results and easy for 
operations use. 

 

• Cannot deal with time-
sequential data. 

• Cannot provide a 
distribution of impact 
duration. 

• Best correct 
classification rate: 74%. 

 

1.4.4 Data mining method for impact duration prediction. Shen and Huang. (2011) 

Shen and Huang (22) developed a Bayesian Network (BN) model for predicting impact duration 
based on the time sequence of incident management stages after an incident is verified by the 
Fort Lauderdale Traffic Management Center (TMC) in Florida and response vehicle arrived at 
the incident location. A BN represents the cause-effect relationships and conditional 
dependencies between variables of interest by a directed acyclic graph and local conditional 
probability distribution for each node that defines the joint probability distribution. Since BN 
cannot handle continuous variables, it is necessary to discretize the continuous impact duration 
variables into nominal variables first. Through structural learning and probability inference, the 
structure of a BN can be determined. This network is used as the basis to compute probabilities 
of interest-based on the Bayes’ theorem. The constructed model structure of the final graph is 
shown in Figure 15. The advantage of this model is that the probability results are 
straightforward and the prediction accuracy is acceptable. In addition, given the apparent 
varying nature of impact duration data, this model is robust with respect to outliers by 
classifying incidents into broader categories according to some field applications. 
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Figure 15 Structure of the learned Bayesian Network. Shen and Huang (22) 
 
Data needs 
Traffic data: None. 
Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and 
fatalities, property damage. 
Operations data: Whether response agencies involved or not, whether first notify Traffic 
management center or not.  
Time data: Time when incident is detected, time when incident is cleared, time of day, day of 
week. 
Location data: Roadway type, total number of lanes, number of lanes closed, pavement 
conditions. 
Weather data: Rainy or dry, daylight on or not 
 

Highlights 
Advantages Disadvantages Model performance 

• Provides real-time 
predictions. 

• Provides robust 
prediction to outliers 
than CTM models. 

• Captures the stochastic 
nature of incidents. 

• Provides interpretable 
results and easy for 
operations use. 

 

• Cannot deal with 
continuous variables. 
 

• Best correct 
classification rate: 
72.6%. 
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1.4.5 Adaptive learning in Bayesian networks for impact duration prediction. Demiroluk and 
Ozbay. (2014) 

Demiroluk and Ozbay (1) developed a new adaptive model based on Bayesian networks for 
impact duration prediction. They adopted three types of Bayesian network structures, including 
Naïve Bayes model, tree-augmented naïve Bayes model (TAN) and K2 model to discover the 
best Bayesian network for impact duration prediction. In the validation section, they used BIC 
(Bayesian Information Criterion) scores to assess the overall fitness of models and facilitate the 
comparison of these three models. They then proposed an adaptive learning algorithm for real-
time prediction of impact durations. Their model showed an increase in prediction accuracy 
with the use of the adaptive learning algorithm and provided reasonable (best correct 
classification rate as 93.3%) prediction results. Figure 16 shows the mechanism of adaptive 
learning as part of the best Bayesian network model identified in the previous step. 
 

 

Figure 16 Adaptive learning mechanism in the context of Bayesian network model. Demiroluk 
and Ozbay (1) 

Data needs 
Traffic data: None. 
Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and 
fatalities, property damage. 
Operations data: None.  
Time data: Time when incident is detected, time when incident is cleared, time of day, day of 
week, month of year. 
Location data: Roadway type, pavement conditions, distance from the closest exit. 
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Weather data: clear or not, rain or not, snow or not, fog or not 
Light data: daylight or not, dawn or not, dusk or not, dark or not. 
 

Highlights 
Advantages Disadvantages Model performance 

• Provides real-time 
predictions. 

• Deals with time-
sequential data. 

• Provides robust 
prediction to outliers 
than CTM models. 

• Captures the stochastic 
nature of incidents. 

• Provides interpretable 
results and easy for 
operations use. 

• Deals with missing data. 

 

• The prediction accuracy 
is relatively low with 
limited real-time data. 
 

• Best correct 
classification rate: 
63.1% (without 
adaptive learning), 
93.3% (with adaptive 
learning). 
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1.4.5 Summary of Bayesian Network models 

Bayesian Network-based impact duration prediction models require more data than the data 
that is currently available in the TRANSCOM database. One significant feature of Bayesian 
network models is interpretability. An operator can obtain the significance of each variable in 
the prediction process. Demiroluk and Ozbay’s model can automatically adapt itself to future 
conditions by learning the patterns of new incidents and their respective conditions. Their 
model is not only able to work with variables with missing values, but also provide a 
distribution of predicted impact duration. Their model provides relatively low accuracy due to 
the limited on-line real-time data without the use of adaptive learning structure. When more 
operations data becomes available, this model can, however, provide reasonably accurate 
predictions with the use of adaptive learning structure. 
 

Table 6 Summary of Bayesian Network-based impact duration prediction models 
Bayesian Network-based impact duration prediction models 

Model Performance TRANSCOM 
Compatibility 

Highlights 

Ozbay and 
Noyan, 
2006 

Best correct 
classification 

rate: 80%. 

Medium Interpretable, capture stochasticity, 
sequential model, operations, reliable 

Boyles et al, 
2007 

Best correct 
classification 

rate: 50%. 

High Interpretable, capture stochasticity, 
sequential model, operations, unreliable 

Ji et al, 2008 Best correct 
classification 

rate: 74%. 

Low Deal with missing data, sequential model, not 
operations, reliable 

Shen and 
Huang, 
2011 

Best correct 
classification 
rate: 72.6%. 

Low Interpretable, capture stochasticity, 
sequential model, not operations, reliable 

Demiroluk 
and Ozbay, 

2014 

Best correct 
classification 
rate: 63.1%. 

Medium Interpretable, adaptive learning, real-time 
prediction, operations 
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1.5 Hazard-based impact duration prediction models 

Various hazard-based models have been employed to predict impact duration. The log-logistic 
distribution was first used to describe freeway impact duration in the model of Jones et al., 
1999. They adopted hazard-based regression to identify influencing factors of highway impact 
duration. However, their model used the same model and parameters during the whole process 
of highway incidents. Later on, Nam and Mannering, 2000 improved their model by introducing 
multiple stages (detection, response, and clearance) of traffic incidents and provided different 
models at different stages, respectively. They adopted hazard-based regression to identify 
influencing factors of traffic incidents at different stages. In this section, we will introduce 
another hazard-based model which employs hazard-based regression at multiple stages and 
provides real-time predictions for traffic incidents. 

1.5.1 An information-based time-sequential approach to online impact duration prediction. Qi 
and Teng. (2008) 

Qi and Teng (23) proposed a time-sequential procedure which can provide an online prediction 
of impact duration. The procedure contains multiple stages during the incident management 
process. For each stage, they applied a hazard-based duration regression model with different 
variables representing the available information. They used the remaining impact duration as 
the definition of impact duration and concluded that the accuracy of the prediction of impact 
duration increases as more information becomes available and then is incorporated into their 
models. 
Their procedure for on-line incident prediction contains three stages; different hazard-based 
regression models are applied at each stage. Figure 17 shows the incident management process 
with different stages. 

 

Figure 17 Time-sequential procedure for the prediction of remaining impact duration. Qi and 
Teng (23) 

 
Stage 1: Started by an incident being just reported, an operator in a traffic management center 
may want to know how long it may take to clear an incident from a road. The input of Model 1 
includes where the incident occurred, the weather, and the time when the incident happened. 
Stage 2: Started with the verification of the incident. Model 2 receives extra information with 
the type of the incident and the types of vehicles involved in the incident. 
Stage 3: Begins at the onset of the clearance of the incident, the operator may want to update 
the prediction of the time needed to clear the incident based on additional information such as 
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which agency and what facilities are involved in the clearance activities, such information are 
also inputs for Model 3. 
 
The hazard function is written as: 

ℎ(𝑡𝑡) = 𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑝𝑝−1/[1 + (𝜆𝜆𝜆𝜆)𝑝𝑝] 
This function suggests that, if 𝑝𝑝 ≤ 1, the likelihood that an incident will end soon monotonically 
decreases with the length of impact duration. Otherwise (i.e., if 𝑝𝑝 ≥ 1), this likelihood will first 

increase from 0 to a maximum at a critical point 𝑡𝑡 = (𝑝𝑝 − 1)
1
𝑝𝑝/𝜆𝜆 and then decrease. 

The effect of external covariates, 𝑥𝑥𝑖𝑖, on impact duration can be incorporated by writing 
𝜆𝜆 = exp (−𝛽𝛽𝛽𝛽) 

The parameters of the probability distribution 𝑝𝑝 and 𝜆𝜆, and the coefficients of the duration 
model 𝛽𝛽, can be estimated by maximum likelihood estimation using the likelihood function: 

ln 𝐿𝐿 = �ℎ0[𝑡𝑡𝑖𝑖 exp (−𝛽𝛽𝑋𝑋𝑖𝑖)]exp (−𝛽𝛽𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+  �𝑆𝑆0[𝑡𝑡𝑖𝑖 exp (−𝛽𝛽𝑋𝑋𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

 

Where 𝑆𝑆0(𝑡𝑡) = 1/(1 + (𝑡𝑡)𝑝𝑝) and ℎ0(𝑡𝑡) = 𝑝𝑝(𝑡𝑡)𝑝𝑝−1/[1 + (𝑡𝑡)𝑝𝑝] 
 
Data needs 
Traffic data: None 
Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and 
fatalities, property damage. 
Operations data: Type of response agencies involved (Police, NYCDOT), whether tow truck is 
involved or not. 
Time data: Time when incident is detected, time when incident is cleared, time of day, day of 
week. 
Location data: Roadway type, number of lanes closed. 
Weather data: Snow or clear, rain or dry 
 

Model Highlights 
Advantages Disadvantages Model performance 

• Provides real-time 
predictions. 

• Deals with time-
sequential data. 

• Provides interpretable 
results and easy for 
operations use. 

• Provides better 
prediction with updated 
incoming data. 

 

• The form of predicted 
distribution needs to be 
pre-determined. 
 

• Better accuracy as more 
data coming into the 
model. 
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1.6 Support Vector Machine (SVM) based impact duration prediction models 

1.6.1 A comparison of the performance of ANN and SVM for the prediction of traffic accident 
duration. Yu et al. (2016) 

Yu et al. (24) applied a comparative study of the performance of Artificial Neural Network 
(ANN) and support vector machine (SVM) for the prediction of traffic impact durations.  SVM is 
a type of learning algorithms based on statistical learning theory, which can be adjusted to map 
the input-output relationship for the non-linear system.  
An SVM estimator (𝑓𝑓) on regression can be expressed as: 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤 𝜙𝜙(𝑥𝑥) + 𝑏𝑏 
Where 𝜙𝜙 denotes a nonlinear transfer function that maps the input vectors into a high-
dimensional feature space in which the sample data are linearly separable. 
With the induced loss function, the SVM estimator can be converted to an optimization 
problem: 

𝑅𝑅(𝑎𝑎𝑖𝑖,𝑎𝑎𝑖𝑖∗) =  �(𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏
𝑛𝑛

𝑖𝑖=1

 

Where 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) is the kernel function which maps the nonlinear regressors into linear 
regressors by adopting Lagrange multipliers. The structure of the SVM is shown in Figure 18. 

 

Figure 18 Structure of SVM. Yu et al. (24) 
 
This study applied a K-means clustering method to select significant variables from incident 
dataset and input such variables into the SVM model in Figure 19. 



49 
 

 

Figure 19 Structure of SVM for predicting the impact duration. Yu et al. (24) 
 
Data needs 
Traffic data: None. 
Incident data: Incident type, vehicle type, severity, injuries and fatalities, property damage. 
Operation data: None. 
Time data: Time when incident is detected, time when incident is cleared, time of day, day of 
week. 
Location data: None. 
Weather data: Whether severe weather or not. 
 

Highlights 
Advantages Disadvantages Model performance 

• Provides interpretable 
results and easy to use 
operations. 

 

• Cannot deal with time-
sequential data. 

• Cannot provide real-
time predictions. 

• Only tested with 
freeway accident data, 
it is, therefore, 
questionable for other 
real-world applications. 
 

• Best MAPE: 19%. 
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1.6.2 Summary of hazard-based and SVM-based impact duration prediction models 

For hazard-based impact duration prediction models, Qi and Teng et al. provided a three-stage 
model, which covered the time when an incident is reported, the time when the incident is 
confirmed/verified, and the time when the incident is cleared. This model can provide 
immediate duration prediction when an incident is first reported with limited available data. 
The model is also able to provide updated predicted duration when more information is coming 
in and provide better accuracy. This model is suitable for operations use and provides reliable 
results. 
For supported vector machine (SVM), the selected model can provide reliable results. However, 
the model requires additional data that is not currently available in the TRANSCOM database. 
Moreover, the model was only tested and trained using freeway accident data, which may not 
be able to be compatible with other types of non-recurrent incidents in our study region. 
 

Table 7 Summary of hazard and support vector machine (SVM) based models 
Hazard-based model 

Model Performance 
TRANSCOM 

data 
compatibility 

Highlights 

Qi and 
Teng, 
2008 

Better accuracy 
with more data 

becoming 
available 

High Three-stage model, provide immediate and 
updated duration, operations, reliable 

Support vector machine (SVM) 
Yu et al, 

2016 
Best MAPE: 

19% Low Interpretability, one-time model, not 
operations, reliable 

1.7 Estimation of incident recovery time 

Incident recovery time refers to the time difference between the clearance of the incident and 
the time when the traffic flow conditions return to normal. The estimation of incident recovery 
time plays an important role at the operational level. When an incident is detected, operators 
need to know when the affected traffic flow will return to normal conditions. Usually, they 
regard the recovery time as an essential measure in their decision-making process. However, it 
is not easy to determine the incident recovery time using only travel time data since it is 
challenging to be sure that incident is the only reason for increased link travel times. Moreover, 
most impact duration prediction studies have so far ignored the problem of the prediction of 
the incident recovery time (25) and (26). In this study, we include an empirical method (25), 
which allows estimating incident recovery time based only on travel time data. The model is 
able to provide a reasonable estimation of incident recovery time by comparing the background 
travel time profile to the current travel time under incident conditions. Moreover, the model 
can capture the incident recovery time without any model assumptions and calibrations.  
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1.7.1 Empirical methods for estimating traffic incident recovery time. Zeng and Songchitruksa. 
(2010) 

Zeng and Songchitruksa (25) adopted travel time for incidents and non-incidents to develop the 
model of estimating incident recovery time. Their proposed method uses percentile statistics to 
establish the background conditions that represent travelers’ anticipation under incident-free 
conditions and then employs the concept of the difference in the travel time and information 
from the incident database to estimate traffic recovery time. Their proposed method involved 
four main steps: 
1. Determine a background travel time profile. 
2. Obtain a current travel time profile under incident conditions. 
3. Estimate incident recovery time from the difference-in-travel-time profile. 
4. Determine the reliability of the estimates. 
 

 

Figure 20. Travel time profiles for estimating traffic recovery time. (25) 
 
They used a so-called “median-based profile approach” to determine the background travel 
time profile. The background profile should be constructed from the data that share common 
traffic patterns (e.g., same peak periods, the same day of the week, or weekdays versus 
weekends). For each of these profiles, the background travel time value (BTT) at the jth interval 
will be: 

𝐵𝐵𝐵𝐵𝑇𝑇𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑡𝑡1𝑗𝑗 , 𝑡𝑡𝑡𝑡2𝑗𝑗, … , 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛�  𝑛𝑛 ≥ 3 
Where 𝑛𝑛 is the number of days considered in constructing the median profile. 
They obtain the current travel time profile from both recurrent and incident-induced 
congestions. By superimposing the incident-affected travel time profile on the background 
profile, the difference-in-travel-time profile can be determined and used as a basis for 
estimating the traffic recovery time. The traffic recovery time can be expressed as: 
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𝑇𝑇𝑅𝑅𝑘𝑘 =  �
𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 − 𝑡𝑡𝑝𝑝𝑘𝑘;𝑇𝑇𝑇𝑇𝑗𝑗 − 𝐵𝐵𝐵𝐵𝑇𝑇𝑗𝑗 > 𝑎𝑎

0;   𝑇𝑇𝑇𝑇𝑗𝑗 − 𝐵𝐵𝐵𝐵𝑇𝑇𝑗𝑗 ≤ 𝑎𝑎  

Where  
𝑇𝑇𝑅𝑅𝑘𝑘 = traffic recovery time for incident 𝑘𝑘 
𝑇𝑇𝑇𝑇𝑗𝑗𝑘𝑘 = travel time under the impact of incident 𝑘𝑘 at time interval 𝑗𝑗 
𝑡𝑡𝑝𝑝𝑘𝑘 , 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 = incident clearance time (removal time) of incident 𝑘𝑘 and time at the end of impact 
(EOI) respectively 
𝑎𝑎 =  tolerance value that specifies the maximum difference between current travel time and 
background travel time before the end of the traffic recovery process can be specified. 
 
Data needs 
Traffic data: Travel time data (5 minutes aggregation). 
Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and 
fatalities, property damage. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared, time of day, day of 
week. 
Location data: Number of lanes closed. 
Weather data: Whether severe weather or not. 
 

Highlights 
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides incident 
recovery time 
estimation. 

 

• May not represent 
actual background 
traffic conditions 
accurately (using 
median travel time 
profile only). 

 

• Within +/- 10 minutes 
of median recovery 
time. 

 

1.8 Data needs from reviewed models and their compatibility with TRANSCOM data 

 
Below we provide a summary of data needs based on all the impact duration models reviewed 
versus available data from TRANSCOM.  It is important to note that every model does not need 
all the data shown in Table 8.  The team will make its final predictive model selection 
recommendation for the short-run based on the currently available data.  Moreover, if a model 
is deemed promising but not recommended due to the immediate unavailability of data from 
TRANSCOM then it will be identified as a candidate model that can be tested in the mid-term 
contingent upon the availability of required data in the near future.  For example, TRANSCOM 
communicated with the Team their plans for acquiring more incident response data in real-time 
such as number and types of response vehicles on-site and when and if this data becomes 
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available in the future, there will be an opportunity to test other suggested but not selected 
model(s) that will be included in the recommendations section.   
 

Table 8 TRANSCOM data compatibility on reviewed duration prediction models 
  TRANSCOM 

Incident 
attributes 

Incident type ● 
Impact duration ● 

Injury/fatality/property damage Not currently available 
Traffic 

attributes 
Real-time traffic volume Not currently available 

Traffic speed (before, during and after traffic 
incidents) 

● 

Time 
information 

Response time ● 
Time first/last witnessed ● 

Time of police/tow truck arrival  
Time of clearance ● 

Time of day ● 
Day of week ● 

Month of year ● 
Geometry Number of lanes affected ● 

Incident direction ● 
Which lane ● 

Left/right shoulder  
Ramp/exit/corridor ● 

Operation Number of notifications sent  
Workload of crew  

Number of agencies involved ● 
Provision of traffic information to motorists  

Vehicle 
involvement 

Number of vehicles involved  
Number of trucks involved  

Number of rescue vehicles/equipment used  
Weather Rain/snow/sunny ● 
Visibility Dark/bright  
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2. Traffic delay estimation/prediction 
Traffic delay estimation/prediction is the second part of the predictive non-recurrent delay 
modeling methodology described in the beginning sections of the document, which mainly 
includes analytical and data-driven approaches. For analytical models, there are both 
deterministic and stochastic approaches. For data-driven models, methods including statistical 
regression, machine-learning techniques are reviewed in detail. 
 
Impact duration is one of the critical inputs for traffic delay estimation/prediction models. This 
section first starts with the review of traffic delay estimation/prediction models for non-
recurrent incidents as well as short-term work zone-related delay models for completeness 
purposes. The main reason for including work-zone literature is because a short-term work 
zone with mainly local impact is a particular type of non-recurrent incident where some of the 
theoretical model developments can also be applied to all non-recurrent incidents in general. 

2.1 Analytical models for the estimation/prediction of traffic delay 

2.1.1 Incident management integration tool: dynamically predicting impact durations, 
secondary incident occurrence, and incident delays. Khattak et al. (2012) 

Khattak et al. (27) proposed a deterministic delay model that can deal with dynamic incident 
delay prediction. The main inputs to the delay prediction model are: 
1. incident severity which is directly related to incident reduced capacity 
2. impact duration, which affects the length of time it takes to clear the incident 
3. arrival rate (traffic demand) and road geometry information such as the number of lanes. 
Moreover, the predictive outputs of the model include total traffic delay and maximum queue 
length. 
The calculation of queue length at a given time and the remaining total delays on a specified 
freeway segment are illustrated in Figure 21. Traffic arrives at the incident location according to 
curve 𝐴𝐴𝑐𝑐(𝑡𝑡). The departure curve 𝐷𝐷𝑐𝑐(𝑡𝑡) shows the departure from the incident bottleneck. The 
departure flow rate is initially 𝜇𝜇∗, the reduced capacity of the bottleneck and then after the 
incident blockage is cleared at the time 𝑇𝑇𝑐𝑐, the capacity is restored at 𝜇𝜇. The variables 𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛 
represent the (𝑛𝑛 − 1)th and 𝑛𝑛th time intervals from the incident start time – the time interval 
is set at 10min, representing the minimum period when a traffic arrival rate remains steady. 
The traffic arrival curve consists of a number of small time-dependent arrival rates. The current 
queue length for a given time 𝑡𝑡𝑖𝑖 can be expressed as: 

𝑞𝑞(𝑡𝑡𝑖𝑖) = 𝑞𝑞(𝑡𝑡𝑛𝑛−1) + (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑛𝑛−1)(𝜆𝜆𝑛𝑛 − 𝜇𝜇∗)   𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑖𝑖 < 𝑇𝑇𝑐𝑐 
𝑞𝑞(𝑡𝑡𝑖𝑖) = 𝑞𝑞(𝑡𝑡𝑛𝑛−1) + (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑛𝑛−1)(𝜆𝜆𝑛𝑛 − 𝜇𝜇)   𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑖𝑖 < 𝑇𝑇𝑐𝑐 

As long as all of the queue lengths for 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑛𝑛, … , 𝑡𝑡𝑒𝑒 are calculated, the remaining total delay for a 
given time 𝑡𝑡𝑖𝑖 is the shaded area between 𝑡𝑡𝑖𝑖 and 𝑇𝑇𝑒𝑒, which is the summation of small trapeziums 
between arrival and departure curves right after 𝑡𝑡𝑖𝑖. The areas of the first three trapeziums can 
be written as: 

𝐴𝐴1 =
1
2
�𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝑞𝑞(𝑡𝑡𝑖𝑖)� × (𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑖𝑖) 
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𝐴𝐴2 =
1
2
�𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝑞𝑞(𝑡𝑡𝑛𝑛)� × (𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛) 

𝐴𝐴3 =
1
2
�𝑞𝑞(𝑡𝑡𝑛𝑛+2) + 𝑞𝑞(𝑡𝑡𝑛𝑛+1)� × (𝑡𝑡𝑛𝑛+2 − 𝑡𝑡𝑛𝑛+1) 

The remaining total delay at 𝑡𝑡𝑖𝑖 is the sum of 𝐴𝐴𝑘𝑘, where 𝑘𝑘 = 1,2, … represents the trapeziums. 

 

Figure 21 General deterministic queuing diagram of incident delay. Khattak et al (27) 
 
Data needs 
Traffic data: Traffic volume, roadway capacity. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week. 
Location data: Total number of lanes, number of lanes closed. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimation. 

 

• Deterministic model 
may overestimate or 
underestimate traffic 
delay. 

• Cannot provide travel 
time prediction. 

 

• Not provided. 
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2.1.2 Estimation of incident delay and its uncertainty on freeway networks. Li et al. (2006) 

Li et al (28) stated that traditional deterministic traffic delay estimation methods could not 
account for the stochastic attributes of dynamic traffic networks. They introduced a stochastic 
traffic delay model, which can calculate the variance and expected a total delay in dynamic 
networks. Their model was developed from the deterministic delay model and calculate the 
mean traffic delay in the same way as the deterministic model does. They incorporated the 
coefficient of variation of impact duration into the variance of delay and captured the total 
delay with its stochasticity. 
The variance of delay function: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑑𝑑(𝑡𝑡, 𝑟𝑟, 𝑠𝑠1)] = �
�(𝑞𝑞 − 𝑠𝑠1� )2 + 𝜎𝜎𝑠𝑠1

2 �(1 + 𝑥𝑥2)
3

−
(𝑞𝑞 − 𝑠𝑠1� )2

4𝑞𝑞2
� 𝑟̅𝑟2 

The expected total delay function: 

𝐸𝐸[𝑇𝑇𝑇𝑇(𝑡𝑡, 𝑟𝑟, 𝑠𝑠1)] =
��𝑠𝑠1� 2 + 𝜎𝜎𝑠𝑠1

2 � − (𝑠𝑠 + 𝑞𝑞)𝑠𝑠1� + 𝑠𝑠𝑠𝑠�(1 + 𝑥𝑥2)𝑟̅𝑟2

2(𝑠𝑠 − 𝑞𝑞)
 

Where 
𝑠𝑠 = freeway capacity, which is also the departure rate after the incident 
𝑠𝑠1 = reduced freeway capacity during the incident 
𝑞𝑞 = traffic flow rate 
r = impact duration 
𝑡𝑡𝑐𝑐 = congestion clearance time 
𝑥𝑥 = 𝜎𝜎𝑟𝑟

𝑟̅𝑟
 is the coefficient of variation of impact duration 

 
Data needs 
Traffic data: Traffic volume, roadway capacity. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week, time when incident is cleared. 
Location data: Length of affected roadway. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimation. 

• The stochastic model 
provides a distribution 
of traffic delay. 

 

• Cannot provide real-
time travel time 
prediction. 

• Low compatibility with 
TRANSCOM data. 

 

• Not provided. 
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2.1.3 Proposed model for predicting motorist delays at two-lane highway work zones. Cassidy 
and Han. (1993) 

One particularly important factor that directly affects delay and queue length is the length of 
the work zone. Cassidy and Han (29) estimate delay and queue length as a function of work 
zone length.  
The model splits the work zone delay into two delay components, one is queueing delay, and 
the other is a travel time delay. The definition of queueing delay is that once cycle length and 
effective green and red times are computed, queueing delays and queue lengths can be 
determined using queueing theory. The definition of travel time delay is the difference between 
the actual average travel times through the work zone and the average travel times without the 
work zone. 
Data needs 
Traffic data: Traffic volume, roadway capacity, saturation headway, start-up lost time, ending 
lost time, travel time, traffic speed. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week. 
Location data: Length of affected roadway. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimations. 

 

• Deterministic model, 
may overestimate or 
underestimate traffic 
delay. 

• Cannot provide real-
time travel time 
prediction. 

• Low compatibility with 
TRANSCOM data. 

 

• Not provided. 

 

2.1.4 Traffic characteristics and estimation of traffic delays and user costs at Indiana freeway 
work zones. Jiang. (1999) 

Jiang (30) estimated work zone delays under several different categories: vehicle deceleration 
before entering work zones, moving delays experienced by vehicles passing through work zones 
at lower speeds, acceleration delays experienced by vehicles accelerating after existing work 
zones, and queuing delays caused by the ratio of vehicle arrival to discharge rates. 
Note: this model applied M/M/1 queueing theory to calculate the length of the queue when 
the traffic flow rate is below the work zone capacity. Vehicles may arrive at a Poisson 
distribution and exponentially distributed through the work zone. 
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Logistics of the model: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼 = 𝐹𝐹𝑎𝑎𝑎𝑎 [𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑧𝑧 + 𝑑𝑑𝑎𝑎 + (1 − 𝑡𝑡𝐼𝐼)𝑑𝑑𝑤𝑤] + 𝐷𝐷𝐼𝐼 
Where, 
FaI = hourly volume of arrival vehicles at hour i 
dd = delay due to vehicle deceleration before entering the work zone 
dz = delay due to reduced speed through the work zone 
da = delay due for resuming freeway speed after exiting the work zone 
dw = delay due to vehicle queues during uncongested traffic 
DI = delay due to vehicle queues during congested traffic 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝐿𝐿𝐿𝐿𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑄𝑄0 + �𝐹𝐹𝑎𝑎𝑎𝑎 − 𝑚𝑚𝐹𝐹𝑑𝑑

𝑚𝑚

𝑖𝑖=1

 

Where, 

𝑄𝑄0 = original vehicle queue 

𝐹𝐹𝑎𝑎𝑎𝑎= hourly volume of arrival vehicles at hour i 

𝐹𝐹𝑑𝑑= vehicle queue discharge rate 

Data needs 
Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, vehicle acceleration 
rate. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week. 
Location data: Length of affected roadway. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimations. 

 

• Deterministic model, 
may overestimate or 
underestimate traffic 
delay. 

• Built for work zone 
delay only, additional 
efforts may need for 
adapting other incident 
types. 

• Not provided. 
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• Cannot provide real-
time travel time 
prediction. 

• Low compatibility with 
TRANSCOM data. 

 

2.1.5 Optimal work zone lengths for four-lane highways. Chien and Schonfel. (2001)  

The main objective of Chien and Schonfel’s (31) study is to optimize the work zone length when 
the traffic flow rate is lower than the work zone capacity. When the traffic flow rate is lower 
than the work zone capacity, they also proposed a model to estimate the queue delay. 
Logistics of the model: 

𝑡𝑡𝑞𝑞 =
1
2
�1 +

𝑄𝑄 − 𝑐𝑐𝑤𝑤
(𝑐𝑐0 − 𝑄𝑄)

� (𝑄𝑄 − 𝑐𝑐𝑤𝑤)(𝑧𝑧3 + 𝑧𝑧4𝐿𝐿)2 

Where, 
𝑐𝑐𝑤𝑤 = the work zone capacity 
𝑐𝑐0 = roadway capacity in normal conditions 
𝑄𝑄 = approaching traffic flow 
𝑧𝑧3 = the work zone setup time 
𝑧𝑧4 = the additional time required per work zone kilometer 
𝐿𝐿 = the work zone length 
 
Data needs 
Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, vehicle saturation 
headway. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week, fixed setup time of work zone. 
Location data: Length of work zone. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimations. 

 

• Deterministic model, 
may overestimate or 
underestimate traffic 
delay. 

• Built for one-lane 
closure work zone delay 
only, additional efforts 
may need for adapting 
other incident types. 

• Not provided. 
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• Cannot provide real-
time travel time 
prediction. 

• Low compatibility with 
TRANSCOM data. 

 

2.1.6 Freeway work zone traffic delay and cost optimization model. Jiang and Adeli. (2003) 

Jiang and Adeli (32) proposed a deterministic queuing model for both short term and long term 
work zones based on average hourly traffic flow. The model splits the total delay into two parts: 
upstream queue delay time (𝑡𝑡𝑞𝑞) and the moving delay time (𝑡𝑡𝑚𝑚).  
Logistics of the model: 

𝑡𝑡𝑑𝑑 = 𝑡𝑡𝑞𝑞 + 𝑡𝑡𝑚𝑚 =  � (
𝑇𝑇𝑡𝑡 + 𝑇𝑇𝑡𝑡+∆𝑡𝑡

2
∆𝑡𝑡)

𝑡𝑡𝑖𝑖+𝐷𝐷−1

𝑡𝑡=𝑡𝑡𝑖𝑖

+ � ∆𝑡𝑡𝑚𝑚

𝑡𝑡𝑖𝑖+𝐷𝐷−1

𝑡𝑡=𝑡𝑡𝑖𝑖

= � (
𝑇𝑇𝑡𝑡 + 𝑇𝑇𝑡𝑡+∆𝑡𝑡

2
∆𝑡𝑡 + ∆𝑡𝑡𝑚𝑚)

𝑡𝑡𝑖𝑖+𝐷𝐷−1

𝑡𝑡=𝑡𝑡𝑖𝑖

  

𝑇𝑇𝑡𝑡+∆𝑡𝑡 = max {𝑇𝑇𝑡𝑡 − 𝑠𝑠, 0} 

�𝑠𝑠 = 𝑐𝑐𝑤𝑤 − 𝛼𝛼𝑠𝑠𝑓𝑓∆𝑡𝑡     𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
𝑠𝑠 = 𝑐𝑐0 − 𝛼𝛼𝑠𝑠𝑓𝑓∆𝑡𝑡     𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 

Where, 
𝑡𝑡𝑑𝑑= total queueing delay  
𝑡𝑡𝑖𝑖 = the starting time at the work zone in hours ranging from 1 to 24 
𝐷𝐷 = the time period required to complete the maintenance for the work zone 
∆𝑡𝑡 = the given time period 
𝑇𝑇 = the cumulative number of vehicles 
∆𝑡𝑡𝑚𝑚 = the moving delay time 
𝑐𝑐𝑤𝑤 = work zone capacity 
𝑐𝑐0 = freeway capacity without work zone 
𝛼𝛼𝑠𝑠 = seasonal demand factor 
 
Data needs 
Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, vehicle saturation 
headway. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week, fixed setup time of work zone, seasonal demand factor. 
Location data: Length of work zone. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Deterministic model, 
may overestimate or 

• Not provided. 
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• Provides real-time delay 
estimations. 

• Provides both short-
term and long-term 
delay estimations. 

 

underestimate traffic 
delay. 

• Built for work zone 
delay only, additional 
efforts may need for 
adapting other incident 
types. 

• Cannot provide real-
time travel time 
prediction. 

• Low compatibility with 
TRANSCOM data. 

• Can only provide hourly 
delay prediction. 

 
 
 

2.1.7 Methodology for computing delay and user costs in work zones. Chitturi et al. (2008) 

Chitturi et al. (33) proposed a step-by-step methodology to estimate capacity, queue length, 
and delay at work zones. By applying with the lane width factor, heavy vehicle factor, and PCE 
values from HCM, they estimated the adjusted capacity of the work zone.  
Logistics of the model: 

𝑑𝑑𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑑𝑑𝑞𝑞 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 =  ��
𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑖𝑖+1

2
� +  �𝑉𝑉𝑖𝑖 ∗ (

𝐿𝐿
𝑈𝑈0

−
𝐿𝐿

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙
)

𝑖𝑖

𝑡𝑡−1

𝑖𝑖=0

 

𝑛𝑛𝑖𝑖+1 = 𝑛𝑛𝑖𝑖 + 𝑉𝑉𝑖𝑖+1 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑁𝑁𝑜𝑜𝑜𝑜 
Where, 
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡= total delay with work zone 
𝑑𝑑𝑞𝑞= delay due to queueing 
𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠= delay due to the slower speed 
𝑛𝑛𝑖𝑖=number of vehicles in the queue at hour i 
𝐿𝐿= length of the work zone 
𝑉𝑉𝑖𝑖= demand flow rate in hour i 
𝑈𝑈0= operating speed 
𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙= posted speed limit inside the work zone 
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎= adjusted work zone capacity 
𝑁𝑁𝑜𝑜𝑜𝑜 = number of lanes opened at the work zone 
 
Data needs 
Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, speed limit, vehicle 
saturation headway. 
Incident data: Impact duration. 
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Operations data: None. 
Time data: Time of day, day of week. 
Location data: Length of work zone. 
Weather data: None. 
 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimation. 

• Provides both short-
term and long-term 
delay estimation. 

 

• Deterministic model, 
may overestimate or 
underestimate traffic 
delay. 

• Built for work zone 
delay only, additional 
efforts may need for 
adapting other incident 
types. 

• Cannot provide real-
time travel time 
predictions. 

• Low compatibility with 
TRANSCOM data. 

• Can only provide hourly 
delay predictions. 

• Not provided. 

 

2.1.8 Methodology to analyze queue length and delay in work zones. Ramezani and Benehokal. 
(2011) 

Ramezani and Benehokal (34) proposed that there may be more than one bottlenecks in a single 
workspace and/or the transition area (within the single work zone). When the traffic flow rate 
exceeds the transition area and work zone capacity, there will be active bottlenecks not only in 
the workspace but also in the transition area. When the traffic flow rate is less than capacity, 
there will be only one bottleneck throughout the work zone. 
The model calculated the queueing delay by setting up multiple volume conditions among 
demand, transition capacity, and workspace capacity. When estimating the queue length, the 
model induced shockwave theory to calculate shockwave speed and arriving volume minute-by-
minute.  
 
Data needs 
Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, speed limit, vehicle 
saturation headway. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week. 
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Location data: Length of work zone. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time delay 
estimations. 

• Provides both short-
term and long-term 
delay estimations. 

• Provides 1-, 3-, 5-min 
delay estimations. 

 

• Deterministic model, 
may overestimate or 
underestimate traffic 
delay. 

• Built for work zone 
delay only, additional 
efforts may need for 
adapting other incident 
types. 

• Cannot provide real-
time travel time 
predictions. 

• Low compatibility with 
TRANSCOM data. 

• Not provided. 

 

 

2.1.9 Theoretical approach to predicting traffic queues at short-term work zones on high-volume 
roadways in urban areas. Ullman and Dudek. (2003) 

The model is designed for estimating queue length of the short-term work zone on urban 
highways. Ullman and Dudek (35) had a concern that the current models have an overestimation 
of queue length due to the assumption of far apart on and off-ramp. Instead, drivers may choose 
alternative routes to avoid work zone area if they can live in urban highways since the distance 
between on and off-ramp is usually short. Therefore, they applied macroscopic fluid-flow theory 
to estimate the queue length of work zones on urban highways. 
Logistics of the model: 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1) = 𝐾𝐾𝐾𝐾𝐾𝐾 = 𝐾𝐾′ ∆𝑝𝑝1����
𝑇𝑇𝑇𝑇

∆𝑥𝑥𝑖𝑖 
Where, 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1) = the flow permeating out the sides of the pipe through each segment (VPH) 
∆p1 = the average traffic stream pressure differential between the roadway and the rest of the 
corridor within ∆x1 
A = area through which flow is occurring  
K = coefficient of permeability 
TE = total energy of the traffic stream, and 
i = energy gradient across the permeable medium 
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Data needs 
Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, speed limit, vehicle 
saturation headway. 
Incident data: Impact duration. 
Operations data: None. 
Time data: Time of day, day of week. 
Location data: Length of work zone. 
Weather data: None. 
 
 
 
 

Highlights   
Advantages Disadvantages Model performance 

• Stochastic model. 
• Provides real-time delay 

estimations. 
• Provides both short-

term and long-term 
delay estimations. 

 

• Built for work zone 
delay only, additional 
efforts may need for 
adapting other incident 
types. 

• Cannot provide real-
time travel time 
predictions. 

• Low compatibility with 
TRANSCOM data. 
 

 

• Not provided. 

 

 

2.1.10 Summary of analytical models for traffic delay estimation/prediction 

This section summarized available analytical methods for traffic delay estimation/prediction. 
Both deterministic and stochastic models for work zone and other general non-recurrent 
incidents were introduced. For deterministic models, one significant advantage is that they can 
provide average traffic delay and queue lengths fast. However, all deterministic models suffer 
from the problem of overestimation. Stochastic models can predict expected total delay and 
variance of total delay. However, due to low compatibility of their data needs with 
TRANSCOM’s database, they may not be well suited to be used as part of TRANSCOM’s 
operators. Table 9 shows a summary of all analytical models of delay estimation/prediction that 
are reviewed so far. 
 

Table 9 Summary of analytical models of delay estimation/prediction 
Analytical models for delay estimation 
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Model TRANSCOM 
Compatibility Highlights 

Khattak et al, 
2012 Low Deterministic model, average delay, not 

operations, overestimated 

Li et al, 2006 Low Stochastic model, the variance of delay, not 
operations, reliable 

Cassidy and 
Han, 1993 Medium 

Work zone related, deterministic model, can 
only model one lane closure event, not 
operations, overestimated 

Jiang, 1999 Medium Work zone related, deterministic model, 
average delay, not operations, overestimated 

Chien and 
Schonfel, 

2001 
Low Work zone related, deterministic model, 

average delay, not operations, overestimated 

Jiang and 
Adeli,2003 Low 

Work zone related, deterministic model, good 
for both long and short term work zone, not 
operations, overestimated 

Chitturi et al, 
2008 Medium 

Work zone related, can use sensor data, good 
for both long and short term work zone 
impact assessment, reliable 

Ramezani 
and 

Benehokal, 
2011 

Low 
Work zone related, deterministic model, 
similar to Chitturi but was modeled with 5-
min aggregated traffic data (volume) 

Ullman and 
Dudek, 2003 Low Work zone related, stochastic model, shock-

wave analysis, not operations, reliable 
 

2.1.11 Traffic incident management decision support tools for planning purposes 

In this section, we introduce several decision support tools that are used for work zone analysis 
and mainly for planning purposes. These decision tools are developed using deterministic 
models mentioned above.  
 
QuickZone. 
QuickZone (36) is the most used software packages for estimation of queue lengths and delays 
in work zones. It is a work zone delay estimation program developed in Microsoft Excel. The 
primary functions of QuickZone include quantification of corridor delay resulting from capacity 
decreases in work zones, identification of delay impacts of alternative project phasing plans, 
supporting tradeoff analyses between construction costs and delay costs, examination of 
impacts of construction staging, by location along mainline, time of day (peak vs. off-peak) or 
season, and assessment of travel demand measures and other delay mitigation strategies. 
QuickZone can provide estimation/prediction of traffic delay and queue lengths.  
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RILCA. 
One drawback of QuickZone is that users need to input highly detailed traffic data to analyze 
the impacts of long-term lane closures. This drawback can be addressed by RILCA (Rutgers 
Interactive Lane Closure Application) (37), an interactive computer tool to plan lane closures for 
work zones. It is a tool that was developed with the ArcView geographic information system 
(GIS) software package as the main development environment. One of its features is that RILCA 
gives users the flexibility to export the corresponding traffic volume from RILCA data to 
QuickZone, if a detailed long-term lane closure analysis is required. It reduces the effort of 
inputting detailed data into QuickZone for long-term work zone analysis. 
 
Work Zone Coordination tool 
Work Zone Coordination tool (38) is an online tool that can evaluate the feasibility and 
effectiveness of coordinating short- and long-term work zones and to measure the benefits. It 
integrates all scheduled and active construction projects, identifies conflicts between work 
zone projects. It provides the estimation of traffic delay and queue length using deterministic 
queuing model.  
 
There are other decision support tools embedded with deterministic models, such as LCAP 
(Lane Closure Analysis Program) (39) adopted by Maryland State Highway Administration. 
There are also other work zone related studies (40) (26) that provide models to quantify the 
traffic impacts of work zones or estimate the reduced capacity caused by work zones. For 
example, Bian and Ozbay (41) proposed an artificial neural network model to estimate the 
uncertainty of work zone capacity and provide its predicted distribution.  
 

2.2 Data-driven methods for estimating/predicting impacts of non-recurrent traffic 
events 

Different from the analytical/statistical methods mentioned in the previous sections, this 
section will provide data-driven approaches that provide traffic impacts of non-recurrent traffic 
events by learning from the speed profiles with and without non-recurrent traffic events. Given 
the availability of specific data from TRANSCOM, this type of models can be the most practical 
ones for TRANSCOM’s operations needs.  
 

2.2.1 Estimating magnitude and duration of incident delays. Garib et al. (1997) 

Garib et al. (6) proposed a multivariate regression model that is based on predictors such as the 
number of lanes affected, the number of vehicles involved and the impact duration. They 
proposed two models that best predicted the incident delay based on their available data: 
Model 1: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  −4.26 + 9.71𝑋𝑋1𝑋𝑋2 + 0.5𝑋𝑋1𝑋𝑋3 + 0.003𝑋𝑋2𝑋𝑋4 + 0.0006𝑋𝑋32 
Model 2: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  −0.288 + 3.8𝑋𝑋1𝑋𝑋2 + 0.51𝑋𝑋1𝑋𝑋3 + 0.06𝑋𝑋3 + 0.356𝑋𝑋23 
Where, 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = cumulative incident delay 
𝑋𝑋1 = number of lanes affected by the incident 
𝑋𝑋2 = number of vehicles involved in the incident 
𝑋𝑋3 = impact duration (the difference between the incident detection time and the incident 
clearance time) 
𝑋𝑋4 = traffic demand upstream of the incident in the last 15 minutes before the incident starting 
time 
 
Data needs 
Traffic data: Traffic volume, reduced roadway capacity. 
Incident data: Impact duration, number of vehicles involved, incident type, truck involvement. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Occurrence within bottleneck, number of segments upstream of the incident, 
number of lanes affected. 
Weather data: Rain or dry. 
 

Highlights   
Advantages Disadvantages Model performance 

• Requires low 
computation effort. 

• Cannot provide real-
time travel time 
predictions. 

• Prediction accuracy: 
74%. 

 

2.2.2 Modelling the impact of traffic incidents on travel time reliability. Hojati et al. (2016) 

Hojati et al. (42) proposed a method to quantify the impacts of traffic incidents on travel time 
on freeways. They adopted historical data to establish recurrent speed profiles and identified 
non-recurrent congestion based on their negative impacts on speeds. The locations and times 
of incidents are used to identify incidents among non-recurrent congestion events. 
They firstly defined the recurrent speed profile as a benchmark to quantify the impact of traffic 
incidents. Therefore, the extra travel time due to traffic incidents is calculated for each time 
interval as the difference between the recurrent speed profile and the daily speed profile. 
The procedure can be described as follow: 
1. Apply Quantum-Frequency Algorithm to identify recurrent speed profile (𝑅𝑅𝑅𝑅𝑃𝑃𝑔𝑔) and daily 
speed profile (𝐷𝐷𝐷𝐷𝑃𝑃𝑔𝑔). The difference between 𝑅𝑅𝑅𝑅𝑃𝑃𝑔𝑔 moreover, 𝐷𝐷𝐷𝐷𝑃𝑃𝑔𝑔 highlighted the impact of 
non-recurrent congestion events. 
2. Non-recurrent events duration prediction. 
3. Estimation of total travel time due to the non-recurrent event. The equation of getting 
estimated travel time over affected links is: 

𝐷𝐷𝐷𝐷𝑇𝑇𝑡𝑡𝑘𝑘
𝑖𝑖 =  � 𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖(𝑔𝑔𝑚𝑚, 𝑡𝑡𝚤𝚤𝑚𝑚����� ) = �

𝑙𝑙𝑔𝑔𝑚𝑚
𝐷𝐷𝐷𝐷𝑃𝑃𝑔𝑔𝑚𝑚,𝑑𝑑,𝑡𝑡𝚤𝚤𝑚𝑚�����

𝑗𝑗

𝑚𝑚=1

 
𝑗𝑗

𝑚𝑚=1

 

Where, 
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𝐷𝐷𝐷𝐷𝑇𝑇𝑡𝑡𝑘𝑘
𝑖𝑖 = total travel time due to an event 𝑖𝑖 on a set of affected links, in the time interval 𝑡𝑡𝑘𝑘, in 

hours (h) 
𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖(𝑔𝑔𝑚𝑚, 𝑡𝑡𝚤𝚤𝑚𝑚�����) = travel time due to an event 𝑖𝑖 on link 𝑔𝑔, 𝑚𝑚th affected link, in the time interval 
𝑡𝑡𝚤𝚤𝑚𝑚�����, in hours (h) 
𝐷𝐷𝐷𝐷𝑃𝑃𝑔𝑔𝑗𝑗,𝑑𝑑,𝑡𝑡𝚤𝚤𝑚𝑚����� = speed on link 𝑔𝑔, 𝑚𝑚th affected link, day 𝑑𝑑, in the time interval 𝑡𝑡𝚤𝚤𝑚𝑚����� 
𝑙𝑙𝑔𝑔𝑚𝑚 = link length of link 𝑔𝑔, 𝑚𝑚th affected link, (km) 
𝑡𝑡𝑘𝑘 = time interval of an event 𝑡𝑡𝑘𝑘 ∈ {𝑡𝑡𝑠𝑠, … 𝑡𝑡𝑒𝑒} 
𝑚𝑚 = set of affected links of an event 𝑚𝑚 ∈ {𝑔𝑔1, . .𝑔𝑔𝑗𝑗} 
𝑡𝑡𝚤𝚤𝑚𝑚����� = time interval of 𝑗𝑗th affected link based on departing the event at the time interval 𝑡𝑡𝑘𝑘, 
𝑡𝑡𝑘𝑘 − [�∑ 𝑑𝑑𝑑𝑑𝑑𝑑�𝑔𝑔𝑚𝑚−1, 𝑡𝑡𝚤𝚤𝑔𝑔𝑚𝑚−1

���������𝑔𝑔𝑗𝑗
𝑚𝑚=𝑔𝑔2 � × 𝛼𝛼], 𝛼𝛼 is an aggregated factor, the default value is 12 

 

Figure 22 Schematic event identification in a typical day. Hojati et al. (42) 
 
Data needs 
Traffic data: Traffic volume, traffic speed. 
Incident data: Impact duration, incident type. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Link segment location, incident direction, segment length. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy to use. 
• Provides travel time 

estimations. 

 

• Cannot make real-time 
predictions, the travel 
time can only be 
predicted after the 
clearance of incident. 

• Not given. 
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• Cannot provide a range 
of predicted travel time. 

• Cannot provide queue 
length estimations. 

2.2.3 A framework for travel time variability analysis using urban traffic incident data. Javid et 
al. (2018) 

This study (43) developed a framework to estimate travel time variability caused by traffic 
incidents using integrated traffic, road geometry, incident, and weather data. They adopted a 
two-year data in the California highway system to develop robust regression models. Their 
models estimate highway clearance time, which shares the same definition of recovery time 
defined in Section 1.7.1. Their models also estimate speed changes in percentages in both 
upstream and downstream links of the incident bottleneck. Based on their proposed speed 
change models, they estimated travel time variability due to non-recurrent incidents. Such 
travel time variability can be regarded as one measurement to quantify the impact of non-
recurrent incidents.  
Their methodology for speed change model is relatively easy, they employed a method called 
Iteratively Reweighted Least Squares (IRLS) to implement robust regressions. 

𝛽̂𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = arg min
𝛽𝛽

� 𝜔𝜔𝑖𝑖𝑟𝑟𝑖𝑖2(𝛽𝛽)
𝑛𝑛

𝑖𝑖=1
  

𝜔𝜔𝑖𝑖 =
𝜌𝜌(𝑟𝑟𝑖𝑖𝜎𝜎)
𝑟𝑟𝑖𝑖2

 

𝜌𝜌(𝑢𝑢) = �1 − �1 − �
𝑢𝑢

4.685
�
2
�
3

1   𝑖𝑖𝑖𝑖 |𝑢𝑢| > 4.685
𝑖𝑖𝑖𝑖 |𝑢𝑢| ≤ 4.685 

Where,  
𝜔𝜔𝑖𝑖= weight for observation i 
𝜎𝜎 = standard deviation of the residuals 
𝜌𝜌= loss function 
 
The equations above will be iteratively implemented in a step-wise algorithm and stop until the 
maximum changes in weights is less than 95%. 
 
The regression function for predicting speed changes and highway clearance time is listed as 
below: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑥𝑥𝑖𝑖 + ∑𝛾𝛾𝑖𝑖 + ∑𝛾𝛾𝑖𝑖𝛾𝛾𝑗𝑗 
𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 

 
The descriptions of variables in the model are shown in Table 10. 
 

Table 10 Descriptions of variables in model. 
Variable in the model Description 
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𝒚𝒚𝟏𝟏 Percent reduction in speed 
𝒚𝒚𝟐𝟐 Highway clearance time (min) 
𝒙𝒙 Incident clearance time (min) 
𝜸𝜸𝟏𝟏 Whether the incident occurred over the weekend or not (1 or 0) 
𝜸𝜸𝟐𝟐 Whether the incident occurred during peak hours or not (1 or 0) 
𝜸𝜸𝟑𝟑 Whether all lanes are engaged or not (1 or 0) 
𝜸𝜸𝟒𝟒 The highway has 12 ft width and 18 ft shoulders or not (1 or 0) 
𝜸𝜸𝒊𝒊𝒊𝒊 Interaction variable of 𝛾𝛾𝑖𝑖 and 𝛾𝛾𝑗𝑗 

 
Data needs 
Traffic data: Traffic speed. 
Incident data: Impact duration, incident type. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared, time of day, day of 
week. 
Location data: Link segment location, incident direction, segment length, segment width, 
shoulder width. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Cannot provide queue 
length estimations. 

• Low performance R2: 
0.33 

2.2.4 Estimating freeway route travel time distributions with consideration to time-of-day, 
inclement weather, and traffic incidents. Caceres et al. (2016) 

This paper (44) developed a probabilistic model for estimating route travel time variability with 
consideration of factors like time-of-day, inclement weather, and traffic incidents. They applied 
Monte Carlo simulation to estimate the total travel time from origin to destination by creating 
condition probability function for each link travel time.  
Their diagram for modeling link and route travel time is shown below. 
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Figure 23 Diagram for modeling link and route travel time. (a) the general model of a single link. 
(b). example of the route (44). 

 
One significant shortcoming of this model is that all variables are defined in a discretized way.  
Let 𝑇𝑇𝑖𝑖 represent travel time in link 𝑖𝑖, where 𝑇𝑇𝑖𝑖:Ω → ℝ+. 

𝑆𝑆𝑖𝑖:Ω → {5, 15, 25, 35, 45, 55, 65} 
𝑅𝑅:Ω → {Peak, Off − Peak, Weekend} 
𝑊𝑊:Ω → {Clear, Moderate, Rain, Snow} 

𝐴𝐴𝑖𝑖:Ω → {None, Accident} 
Where, 
𝑆𝑆𝑖𝑖 = speed in link 𝑖𝑖 
𝑅𝑅 = time-of-day 
𝑊𝑊 = weather condition 
𝐴𝐴𝑖𝑖  = incident present in link 𝑖𝑖 
 
They use probability mass function (pmf) to obtain the probability distribution for total travel 
time of a route. 

𝑝𝑝(𝑠𝑠𝑖𝑖|𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, 𝑟𝑟,𝑤𝑤) =  �𝑝𝑝1(𝑠𝑠𝑖𝑖|𝑎𝑎𝑖𝑖 , 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, 𝑟𝑟,𝑤𝑤)
𝑎𝑎𝑖𝑖

𝑝𝑝2(𝑎𝑎𝑖𝑖|𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, 𝑟𝑟,𝑤𝑤) 
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Estimating 𝑝𝑝1 and 𝑝𝑝2 directly from the data requires having observations for all levels of 𝑠𝑠𝑖𝑖 for 
each combination of (𝑎𝑎𝑖𝑖, 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, 𝑟𝑟,𝑤𝑤) and observations for all levels of 𝑎𝑎𝑖𝑖 for each 
combination of (𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, 𝑟𝑟,𝑤𝑤). 
The dependency of all the 𝑝𝑝𝑝𝑝𝑝𝑝s needed to find the probability distribution of the speed of link 
𝑖𝑖 is shown as below. 
 

 

Figure 24 Variable indication of pmf derivations (44). 
 
When constructing each 𝑝𝑝𝑝𝑝𝑝𝑝 level by level (from level 1 to level 4), a recursive probability tree 
is built to derive the conditional 𝑝𝑝𝑝𝑝𝑝𝑝 for the speed of link 𝑖𝑖 with the consideration of multiple 
combinations of time-of-day, weather, and incidents. 
 
Data needs 
Traffic data: Traffic speed. 
Incident data: Impact duration, incident type. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Link segment location, incident direction, segment length. 
Weather data: Clear, moderate, rain or snow. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Cannot provide queue 
length estimations. 

• Best KS difference: 
0.175, p-value: 0.573. 
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• Provides probabilistic 
distribution of travel 
time. 

• Only considered the 
occurrence of the 
incident, without taking 
other incident 
attributes. 

2.2.5 Predicting the spatial impact of planned special events. Martino et al. (2019) 

This study (45) proposed a model to quantify planned special events (PSE) such as concerts, 
soccer games, and so on. They employed a K-Nearest Neighbor (KNN) classifier and Dynamic 
Time Warp (DTW) to predict the spatial impact of PSE. By training traffic data of event and non-
event days for each road, using DTW, this model identified all road segments around a venue 
that show a different traffic behavior on event days than non-event days. 
Their approach of identifying road segments that are potentially affected by PSE is by 
comparing events on different time-spans. They introduced the definition of Relative Timespan 
of Interest and cited an approach to identify any non-recurring influencing factor perturbing the 
flow on a specific date. The queue length can, therefore, be provided by adding up the total 
numbers of affected road segments. 
They applied a binary classification approach to identify the road segments affected by a PSE. In 
order to search for correlations between Non-Recurring Traffic and the presence of an event, 
they employed a binary classifier to discriminate road segments of the dataset into positive 
(Non-Recurring Traffic) and negative (no abnormal traffic behavior) classes. 
 
Data needs 
Traffic data: Traffic speed. 
Incident data: Impact duration, information about planned special events. 
Operations data: None. 
Time data: Planned special events schedules and time. 
Location data: A description of the road network. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy to use. 
• Provides queue length 

predictions. 

• Cannot provide travel 
time predictions. 

• Model-based on 
planned special events, 
additional efforts may 
need for adapting to 
other types of incidents. 

• Best F-measure: 0.97. 

 

2.2.6 Traffic accident detection with spatiotemporal impact measurement. Yue et al. (2018) 

This study (46) adopted Impact Interval Grouping (IIG) to capture the spatiotemporal impact of 
traffic accidents to upstream locations. IIG compares real-time traffic speed with historical data 
and generates impact intervals to determine the presence of accidents. They then take a 
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multivariate time series classification approach to extract features to quantify the impact of 
traffic accidents. 
This study used a 2-norm multi-dimensional dynamic time warping (WD-DTW) as the baseline 
model.  
This study compared real-time speed with historical speed to quantify the incident impact. The 
historical speed is calculated using the average speed at the same location and same time. The 
unusual speed drop is modeled discretely by extracting impact intervals. Through such 
discretization, they converted the complex time series into a concise formulation which is 
easier to model as shown below.  

 

Figure 25 Impact intervals and impact interval groups of an incident (46). 
 

 
The definition of impact interval is a tuple (𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒), 𝑡𝑡𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑒𝑒, |𝑥𝑥(𝑡𝑡)−𝑥̅𝑥(𝑡𝑡)|

𝑥̅𝑥(𝑡𝑡)
≥ 𝜃𝜃. Here 𝑥𝑥(𝑡𝑡) 

denotes the real-time speed at time 𝑡𝑡, and 𝑥̅𝑥(𝑡𝑡) denotes the historical average speed of the 
same sensor, at time 𝑡𝑡. 𝜃𝜃 is a tuning parameter determining how strict the impact is measured. 
The IIG procedure includes three steps, 1) Discretization, 2) Smoothing, 3) Grouping. With the 
implementation of IIG, three features will be extracted and calculated to capture the impact of 
traffic incidents. 
Dropping severity 𝜆𝜆: the drops in traffic speed. Given a multivariate time series, 𝑋𝑋 =
{𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑘𝑘}, the historical speed is denoted as 𝑋𝑋� = {𝑥̅𝑥1, 𝑥̅𝑥2, … , 𝑥̅𝑥𝑘𝑘}. The dropping severity is 
measured as: 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖,𝑘𝑘

(1 − 𝑥𝑥𝑘𝑘(𝑖𝑖)/𝑥̅𝑥𝑘𝑘(𝑖𝑖)) 

𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑖𝑖,𝑘𝑘(1 − 𝑥𝑥𝑘𝑘(𝑖𝑖)/𝑥̅𝑥𝑘𝑘(𝑖𝑖)) 
Lasting severity 𝜏𝜏: after an accident happens, the drop in speed will last for a certain time. This 
term is defined similarly as impact duration. Impact interval is used to measure lasting severity 
because the discretization provides an easy extraction of temporal patterns. A list of impact 
intervals 𝐼𝐼𝑘𝑘 is generated. |𝑥𝑥𝑘𝑘| denotes the length of time series 𝑥𝑥𝑘𝑘. The lasting severity is 
measured as: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖,𝑘𝑘

(𝐼𝐼𝑘𝑘(𝑖𝑖)[1]− 𝐼𝐼𝑘𝑘(𝑖𝑖)[0])/|𝑥𝑥𝑘𝑘| 
𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑘𝑘(max

𝑖𝑖
(𝐼𝐼𝑘𝑘(𝑖𝑖)[1]− 𝐼𝐼𝑘𝑘(𝑖𝑖)[0]))/|𝑥𝑥𝑘𝑘| 
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Distant severity 𝜎𝜎: an accident will affect a certain distance in the upstream traffic. This term 
can be used as the queue length of an incident. The distant severity is measured based on the 
existence of impact intervals. 𝑑𝑑𝑘𝑘 denotes the distance of the sensor 𝑠𝑠𝑘𝑘. 

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑑𝑑𝑘𝑘/𝑑𝑑𝐾𝐾  
𝑘𝑘 = arg max

𝑘𝑘
{𝐼𝐼1 𝑡𝑡𝑡𝑡 𝐼𝐼𝑘𝑘 ≠ ∅} 

𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑘𝑘/𝑑𝑑𝐾𝐾 
𝑘𝑘 = arg max

𝑘𝑘
{𝐼𝐼𝑘𝑘 ≠ ∅} 

 
Data needs 
Traffic data: Traffic speed. 
Incident data: Impact duration, incident type. 
Operations data: None. 
Time data: Time when incident is detected, time when incident is cleared. 
Location data: Link segment location, incident direction, segment length. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy to use. 
• Detects traffic 

accidents. 

• Cannot provide travel 
time predictions. 

• Cannot provide queue 
length estimations. 

• Not given. 

 

2.2.7 Utilizing real-world transportation data for accurate traffic prediction. Pan et al. (2012) 

Pan et al. (47) adopted an enhanced ARIMA (auto-regressive integrated moving average) to 
predict traffic. They proposed a method to predict traffic by incorporating historical and real-
time data into time-series mining technique. The first method used H-ARIMA approach, which 
utilizes both historical traffic patterns and current traffic speed for traffic prediction under 
normal conditions and the presence of traffic incidents. 
The method is a hybrid forecasting model named Historical ARIMA (H-ARIMA) that selects in 
real-time between ARIMA or HAM (Historical Average Model) based on their accuracy.  
 
ARIMA: this model is a generalization of the autoregressive moving average model with an 
initial differencing step applied to remove the non-stationary of the data. The model is 
formulated as: 

𝑌𝑌𝑡𝑡+1 = � 𝛼𝛼𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖+1
𝑝𝑝

𝑖𝑖=1
+ � 𝛽𝛽𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖+1 + 𝜖𝜖𝑡𝑡+1

𝑞𝑞

𝑖𝑖=1
 

Where {𝑌𝑌𝑡𝑡} refers to time-series data (e.g., the sequence of speed readings). In the 
autoregressive component of this model (∑ 𝛼𝛼𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖+1

𝑝𝑝
𝑖𝑖=1 ), a linear weighted combination of 

previous data is calculated, where 𝑝𝑝 refers to the order of this model and 𝛼𝛼𝑖𝑖 refers to the 
weight of (𝑡𝑡 − 𝑖𝑖 + 1)-th reading. In the second part (∑ 𝛽𝛽𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖+1

𝑞𝑞
𝑖𝑖=1 ), the sum of weighted noise 

from the moving average model is calculated, where 𝜖𝜖 denotes the noise, 𝑞𝑞 refers to its order 
and 𝛽𝛽𝑖𝑖 represents the weight of (𝑡𝑡 − 𝑖𝑖 + 1)-th noise. 
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Historical Average Model (HAM): they introduced HAM that uses the average of previous 
speed readings for the same time and location to forecast the future data. The HAM is 
formulated as: 

𝑣𝑣�𝑡𝑡𝑑𝑑,𝑤𝑤 + ℎ� =
1

|𝑉𝑉(𝑑𝑑,𝑤𝑤)|
� 𝑣𝑣(𝑠𝑠)

𝑠𝑠∈𝑉𝑉(𝑑𝑑,𝑤𝑤)
 

Where 𝑉𝑉(𝑑𝑑,𝑤𝑤) refers to the subset of past observations that happened at the same time 𝑑𝑑 on 
the same day 𝑤𝑤. Specifically, 𝑑𝑑 captures the daily effects (i.e., the traffic observations at the 
same time of the day are correlated), while 𝑤𝑤 captures the weekly effects (i.e., the traffic 
observations at the same day of the week are correlated). ℎ refers to the prediction horizon 
(the time step in the future). 
They proposed a decision-tree model that selects between ARIMA and HAM whichever reports 
a lower prediction error to forecast the speed at individual time stamps. In this model, the 
decision parameter and threshold are denoted as 𝜆𝜆 and 𝜙𝜙. The detailed approach is shown in 
Figure 26. 
 

 

Figure 26 Algorithm of hybrid ARIMA and HAM (47). 
 

 
Data needs 
Traffic data: Traffic speed or travel time. 
Incident data: Incident type. 
Operations data: None. 
Time data: Time of day, day of week, time when incident is detected. 
Location data: Incident direction, incident location, number of affected lanes. 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 
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• Simple and easy for 
operations use. 

• Provides real-time 
travel time predictions. 

• Can be extended to 
predict travel time with 
the presence of 
incidents. 

• Cannot provide queue 
length estimations. 

• Cannot provide a range 
of predicted travel time. 

 

• Best MAPE: 80% 
(Incident condition). 

 

2.2.8 Analysis and prediction of the queue length for non-recurring road incidents. Ghosh et al. 
(2017)  

Ghosh et al. (3) combined incident records with traffic speed data from the expressways of 
Singapore to compute the queue length. They proposed a hybrid classification-regression 
model to predict the queue length of the incidents in real-time. Their model contains multiple 
stages. The first stage of the model is binary classifier. The second stage is activated if the 
queue length of an incident is predicted to be higher than a predetermined threshold value. 
The model will perform a regression analysis to predict the queue length of incidents for fine-
tuning. The third stage of the model will evaluate the performance of different classification 
and regression methods based on accuracy.  
Their definition of queue length is the spread of upstream congestion links from the incident 
location. For the prediction of the queue length, they employed three methods, classification 
and regression tree (CART), support vector machine (SVM) and Treebagger. The procedure of 
their queue length prediction model is shown below. 
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Figure 27 Flowchart of queue length prediction model (3). 
 

 
Data needs 
Traffic data: Traffic speed. 
Incident data: Incident type, impact duration. 
Operations data: None. 
Time data: Time of the incident. 
Location data: Incident direction, segment length, condition of the shoulder, total number of 
lanes, number of lanes affected, type of affected lanes (1st, 2nd or 3rd,, from extreme right). 
Weather data: None. 
 

Highlights   
Advantages Disadvantages Model performance 

• Simple and easy for 
operations use. 

• Provides real-time 
queue length 
predictions. 

• Cannot provide travel 
time predictions. 

 

• Best MAPE: 25% 
(Incident condition). 
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2.2.9 Real-time travel time prediction using particle filtering with a non-explicit state-transition 
model. Chen and Rakha (2014) 

This paper (48) presents a methodology for a short to medium-term travel time prediction 
which is based on the real-time and historical traffic data collected. They proposed a new 
algorithm based on particle filter algorithm which selects particles from a historical database 
and propagates particles using historical data sequences as opposed to using a state-transition 
model. This particle method does not require an underlying physical model in order to model 
the state transition function but rather only depends on historical travel time trends. They 
apply a partial resampling method to address the degeneracy problem by replacing invalid or 
low weighted particles with historical data that provide similar data sequences to real-time 
traffic measurements.  
For test cases and evaluation, they applied INRIX probe data to learn historical and real-time 
travel time trends. Their model shows an increased performance when compared to KNN and 
Kalman filters. The prediction horizon of their model is as far as 60 minutes (10 minutes time 
intervals). 

 

Figure 28 Demonstration of the proposed particle filter approach (48). 
 

 
For their methodology, they used a graphical representation in Figure 28 to show their 
proposed approach: non-explicit state-transition particle filter (NSPF). The input data are the 
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measured instantaneous travel times for each time interval, the update of measurement data 
from 𝑧𝑧𝑡𝑡−1 to 𝑧𝑧𝑡𝑡 is conducted by shifting the data sequence window one-time step forward. Each 
particle can be recognized as a data sequence of instantaneous travel times and a data 
sequence of experienced travel times on the same historical day. The time update of the 
particle filter from 𝑥𝑥𝑡𝑡−1𝑖𝑖  to 𝑥𝑥𝑡𝑡𝑖𝑖  is accomplished by shifting one step ahead along the data 
sequence of experienced travel time. For each particle, the corresponding traffic pattern 𝑦𝑦𝑡𝑡𝑖𝑖 can 
be derived according to the relationship with 𝑥𝑥𝑡𝑡𝑖𝑖  represented by 𝑦𝑦𝑡𝑡 = ℎ𝑡𝑡(𝑥𝑥𝑡𝑡). At the same time, 
the associated weight 𝑤𝑤𝑡𝑡

𝑖𝑖 can be calculated as the likelihood 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡𝑖𝑖), which can be 
accomplished by comparing the dissimilarity between real-time and historical traffic pattern as 
𝑝𝑝𝑒𝑒𝑡𝑡(𝑧𝑧𝑡𝑡 − 𝑦𝑦𝑡𝑡𝑖𝑖). The likelihood function is normal distribution 𝑁𝑁(0,1). The distribution of 

experienced travel time on the next time interval 𝑡𝑡 + 1 can be predicted as �𝑥𝑥𝑡𝑡+1𝑖𝑖 ,𝑤𝑤𝑡𝑡
𝑖𝑖�𝑖𝑖=1
𝑁𝑁

. For 

multi-step prediction with prediction horizon 𝑡𝑡 + 𝑝𝑝, the predicted travel time is�𝑥𝑥𝑡𝑡+𝑝𝑝𝑖𝑖 ,𝑤𝑤𝑡𝑡
𝑖𝑖�
𝑖𝑖=1
𝑁𝑁

. 
The proposed algorithm is shown in Figure 29. 
 

 

Figure 29 Multi-step travel time prediction by NSPF (48). 
 

 
Data needs 
Traffic data: Travel time. 
Incident data: None. 
Operations data: None. 
Time data: Time of day, day of week. 
Location data: Segment location, segment length. 
Weather data: None. 
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Highlights   

Advantages Disadvantages Model performance 
• Simple and easy for 

operations use. 
• Provides real-time 

travel time predictions. 
• Provides a range of 

predicted travel time. 
• Fast computation time. 

• Cannot provide queue 
length predictions. 

• No test cases for non-
recurrent incidents, 
additional efforts may 
be needed for non-
recurrent incident 
cases. 

 

• Best MAPE: 7.32%. 

 

 
 

2.2.10 Deep learning: a generic approach for extreme condition traffic forecasting. Rose Yu, et 
al. (2017) 

This study (2) provides a deep learning method to predict traffic speed under non-recurrent 
congestion conditions. They propose two methods for peak-hour speed prediction and non-
recurrent congestion prediction. They apply a deep long short term memory (LSTM) for peak 
hour traffic speed prediction. They further improve the model to predict traffic speed under 
non-recurrent congestion conditions through a mixture deep LSTM model. Their model is 
tested using traffic dataset in Los Angeles. 
They mainly adopt LSTM model for peak-hour prediction and post-accident prediction. LSTM is 
a special type of Recurrent neural network (RNN). RNN is a feature map that contains at least 
one feedback loop. Denote the input vector at timestamp t as 𝑥𝑥𝑡𝑡, the hidden layer vector as ℎ𝑡𝑡, 
the weight matrices as 𝑊𝑊ℎ and 𝑈𝑈ℎ, and the bias term as 𝑏𝑏ℎ. The output sequence 𝑜𝑜𝑡𝑡 is a 
function over the current hidden state. RNN iteratively computes the hidden layer and outputs 
using the following recursive procedure: 

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎℎ𝑡𝑡−1 + 𝑏𝑏ℎ) 
And  

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜ℎ𝑡𝑡 + 𝑏𝑏𝑜𝑜) 
Where 𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 represent the weight and bias for the output respectively. 
LSTM is a special type of RNN since it replaces the summation unit in RNN with memory cell 
state which contains gates to protect and control the cell state. In this way, LSTM avoids 
vanishing gradient issues and is able to model the long-term sequence problem. 
 
Data needs 
Traffic data: Traffic speed. 
Incident data: Incident type. 
Operations data: None. 
Time data: Time of day, day of week. 
Location data: Segment location, segment length, incident direction. 
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Weather data: None. 
 
 

Highlights   
Advantages Disadvantages Model performance 

• Provides accurate travel 
time prediction. 

• Designed specifically to 
predict traffic speed 
with/without non-
recurrent incidents. 

• Cannot provide queue 
length predictions. 

• Cannot provide a range 
of predicted travel time. 

• Requires heavy 
computation efforts. 

 

• Best MAPE: 0.97%. 

 

2.2.11 Summary of data-driven models for traffic delay estimation 

In summary, with the investigation of available data-driven models for travel time and queue 
length prediction, we found that there are not any available models which can provide both 
travel time and queue length prediction with the presence of non-recurrent incidents. A future 
effort could determine if a model exists that would combine prediction models for impact 
duration, traffic delay, and queue length to satisfy the main objective of this project. 
 

Table 11 Summary of data-driven models of delay estimation/prediction. 
Data-driven models for delay estimation/prediction 

Model TRANSCOM 
data 

compatibility 

Highlights 

Garib et al, 
1997 

Low Statistical regression, operations, not reliable 

Hojati et al, 
2016 

High Able to provide travel time increase, cannot 
be used for prediction purpose, operations, 
reliable 

Javid et al, 
2018 

High Travel time prediction, statistical regression, 
operations, not reliable 

Caceres et 
al, 2016 

High Travel time prediction, able to provide travel 
time distribution, can provide link and route 
travel time. Modeled with discretized data 
interval, operations. 

Martino et 
al, 2019 

High Queue length prediction, machine learning 
model, designed for planned special events, 
reliable 

Yue et al, 
2018 

High Queue length identification, machine learning 
model, designed for incident detection 
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purpose, not able to predict queue length, 
reliable 

Pan et al, 
2012 

High Travel time prediction, time-series method, 
real-time, operations, reliable 

Ghosh et al, 
2017 

High Queue length prediction, machine learning 
model, real-time, operations, reliable 

Chen and 
Rakha, 2014 

High Travel time prediction, provide a range of 
predicted travel time, operations, reliable 

Yu et al, 
2017 

High Travel time prediction, deep learning model, 
high accuracy, reliable 

 

2.3 Data needs from reviewed models and their compatibility with TRANSCOM data 

Below we provide a summary of data needs based on all the incident delay 
estimation/prediction models reviewed versus available data from TRANSCOM.  It is important 
to note that every model does not need all the data shown in Table 12.  The team will make its 
final predictive model selection recommendation for the short-run based on the currently 
available data in addition model’s predictive capabilities and accuracy.  Moreover, if a model is 
deemed promising but not recommended due to the immediate unavailability of data from 
TRANSCOM then it will be identified as a candidate model that can be tested in the mid-term 
contingent upon the availability of required data in the near future. 
 

Table 12 Data compatibility with TRANSCOM for traffic delay estimation/prediction 
  TRANSCOM 

Incident 
attributes 

Incident type ● 
Impact duration ● 

Traffic 
attributes 

Real-time traffic volume Not currently 
available. 

Traffic speed before, during and after traffic incidents ● 
Startup/end lost time ● 

Acceleration rate ● 
Geometry Number of lanes affected ● 

Incident direction ● 
Length of incident  
Roadway capacity ● 

Vehicle 
attributes 

Number of vehicles involved  
Number of trucks involved  

Weather Rain/snow/sunny ● 
Visibility Dark/bright  
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3. Data analysis towards estimating selected operations models 
TRANSCOM provided the research team with three types of data from 2015 to 2018 in the ICM-
495 corridor (Figure 1), which included highway events, highway trip, and HPMS volume data. 
There are 7 types of data files in highway events data, 2 types of files in highway trip data and 1 
type of file in HPMS volume data. Table 13 shows the description of collected datasets from 
TRANSCOM.  
 

Table 13. Description of data obtained from TRANSCOM. 
Type Details Years Export 

Type 
Highway 
Events 

  

Incidents 2015, 2016, 2017, 2018 CSV 
Construction 2015, 2016, 2017, 2018 CSV 
Special Event 2015, 2016, 2017, 2018 CSV   

  
Facility - Event Type Mapping   CSV 
Incident Type - Event Category 
Mapping 

  CSV 

      
Event - link ID mapping 2015, 2016, 2017, 2018 CSV 
Event Actions 2015, 2016, 2017, 2018 CSV 

Highway 
Trip Data 

Link travel time every 2 minutes 
by day of week for following 

    

1. Monthly 2015, 2016, 2017, 2018 CSV 
2. Quarterly 2015, 2016, 2017, 2018 CSV 
3. Yearly 2015, 2016, 2017, 2018 CSV 

      
Link Definition including no. of 
lanes details 

  CSV 

Link shapefile   ESRI 
Shapefile 

Holiday Calendar 2015, 2016, 2017, 2018 CSV 
HPMS 

Volume 
AADT by link IDs 2017 CSV 
Hourly distribution factor   CSV 

 

3.1 Highway events 

Highway events dataset includes seven types of data files: Highway Events-Incidents, Highway 
Events-Construction, Highway Events-Special Events, Facility-Event Type Mapping, Incident 
Type-Event Category Mapping, Event-Link ID Mapping, Event Actions. 
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Highway Events-Incidents, Construction, Special Events 

 
These files include 21,277 individual records of non-recurrent traffic events (5,265 incidents, 
14,778 construction activities, and 1,234 special events) that occurred from 2015 to 2018, as 
shown in Figure 30. A total of 67 columns are included in each of these data files, including 
details of non-recurrent traffic events such as event type, start/end date time, direction of the 
event and so on. The purpose of this study is to provide traffic impact duration and 
delay/queue length predictions. After a detailed literature search and review, we selected the 
attributes that we thought would be useful for operation duration and impact model calibration 
and validation. Table 14 shows a description of these 20 selected attributes.  The description of 
the entire 67 attributes is provided in Table 38 in Appendix.  
 

 

Figure 30. Type and percentage of events that occurred from 2015 to 2018. 
 

Table 14. Description of selected data fields from highway events data files. 
Sr. 
No

. 

Field Name Description Format Missin
g Rate 

Example 

1 Id Unique identifier of event String 0.02% ORI171242207 

4 eventstatus Status of an event  
List of values  
    0 - New  
    1 - Updated  
    2 - Closed  
    255 - Scheduled  

Integer 0.02% Closed 

25%

69%

6%

Incidents Construction Special events
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5 StartDateTime Start date - time of event  Datetime 0.02% 12/25/17 1:39:00 
AM 

6 EndDateTime End date - time of event  Datetime 0.03% 1/1/18 1:54:21 AM 

7 LastUpdate Last updated date-time of 
an event  

Datetime 0.02% 12/25/17 1:39:40 
AM 

9 Organization_ShortNa
me 

Reporting organization 
Name  

String 0.02% MTA Bridges & 
Tunnels 

10 eventType Contains event type of 
current event   

String 0.02% Disabled vehicle 

11 LanesTotalCount Total lanes of roadway  Integer 99.29
% 

4 

12 LanesAffectedCount Lanes affected by this 
event  

Integer 95.15
% 

2 

13 LanesDetail Contains lane affected 
detail. Example, all lanes 
at least one lane closed 
for repairs  

String 45.29
% 

right lane 

14 LanesStatus Contains lane status 
Example,  open  close  tra
ffic disruption  

String 45.59
% 

blocked 

15 Facility Event location facility 
name 

String 0.02% I-495 

16 Direction Contains Event direction String 6.38% westbound 
17 City City name based on Event String 12.48

% 
New York 

18 County County name based on 
Event 

String 0.64% Queens 

19 State State abbreviation of 
Event 
Example, 
    NJ – New Jersey 
    PA – Pennsylvania 

String 0.02% NY 

27 PointDatum Any reference point/co-
ordinates from which 
measurement may be 
taken. Here the default 
Point Datum is 
NAD83(North American 
1983 Datum) 

Float 0.02% NAD83 

28 PointLAT Latitude of an event Float 0.02% 40.73690033 
29 PointLON Longitude of an event Float 0.02% -73.9312973 
56 xcm_WeatherConditio

n 
Weather condition during 
event 

String 99.98
% 

sunny 
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The data type and the percentage of missing values are obtained after conducting a complete 
process of raw data analysis and quality check of the provided files. In Table 14, it can be seen 
that most of the selected attributes report missing values less than 10%. However, attributes 
such as “LanesTotalCount”, “LanesAffectedCount” have more than 90% missing values. 
Furthermore, “LanesDetail” and “LanesStatus” are found to have 45% missing values.  

 

Facility-Event Type Mapping 

This file provides all highway facility names in the ICM-495 corridor that had non-recurrent 
traffic incidents from 2015 to 2018. Each event type is referenced with a single facility ID and 
facility name. Table 15 shows the field names with descriptions, data types and percentages of 
missing values. There are no reported missing values in this file.  

Table 15. Facilities mapped into various event types. 
Sr. No. Field Name Description Format Missing 

Rate 
Example 

1 EventTypeID An ID referencing an 
IncidentType object, which 
describes the type of incident 
(e.g. accident, delay). 

Integer 0% 1 

2 EventType A string representing the type(s) 
of event (e.g. "Accident, Delays"). 

String 0% Construction 

3 FacilityID Event location facility ID Integer 0% 109 

4 Facility Event location facility name  String 0% I-495 

 

Incident Type-Event Category Mapping 

This file categorizes 141 event types into 5 distinct categories: congestion, construction, 
incident, special event and weather. For example, traffic events such as overhead sign repair, 
bridge rehabilitation and barrier repairs are categorized as “construction activities”. Traffic 
events such as disabled truck, accident and overturned tractor and trailer are categorized as 
“incidents”. Events like concert, parade and hockey game are categorized as “special events”. 
Events like downed tree and flooding are categorized as “severe weather events”. Table 16 
shows the field names of this file with description, data type and percentage of missing values. 
There are no missing values reported in this file. 

Table 16. Traffic event type mapped into 5 categories. 
Sr. No. Field Name Description Format Missing 

Rate 
Example 

1 EventTypeID  An ID referencing an IncidentType 
object, which describes the type 
of incident (e.g. accident, delay). 

Integer 0% 1 



88 
 

2 EventType  A string representing the type(s) 
of event (e.g. "Accident, Delays"). 

String 0% paving 
operations 

3 CategoryName Event Category 
 Example : 
Congestion 
Construction 

String 0% Construction 

 

Event-Link ID Mapping 

This file mapped each individual traffic event using a link ID of the location where the event has 
actually occurred. Using the link ID and provided coordinates, we are thus able to locate a 
specific traffic event in the ICM-495 corridor. With the help of the provided shapefile, we can 
find the upstream and downstream links of the target link where the event takes place. Table 
17 shows the field names of this file with description, data type and percentage of missing 
values. There are no missing values found in this file. 
 

Table 17. Individual traffic event mapped using a unique link ID. 
Sr. No. Field Name Description Format Missing 

Rate 
Example 

1 TripMasterId Unique ID of Trip Integer 0% 3440 

2 EventId Unique identifier of event Integer 0% ORC14662711 
3 LinkId Native Link ID Integer 0% 119959579 

 
 

Event Actions 

This file includes the operations actions for each individual traffic event from 2015 to 2018 by 
corresponding organization. Actions such as event opened, event updated and event closed are 
described in each traffic event record. The field name “TypeId” refers to a list of action types 
provided by TRANSCOM, which is shown in Table 39 in the Appendix. Table 18 shows the field 
names of this file with description, data type and percentage of missing values. There are no 
missing values reported in this file. 
 

Table 18. Event actions for each individual traffic event. 
Sr. No. Field Name Description Format Missing 

Rate 
Example 

1 EventID An ID referencing the event 
to which event this action 
corresponds to. This should 
be used in conjunction with 
the "eventClass" field to 

String 0% ORI171242207 
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determine the correct 
event. 

2 EventClass Suggest a class of an 
event.  Refer to the "Event 
Class" excel sheet tab. 

Integer 0% 1 

3 OccureAtTime Represents date and time 
when this action was 
created 

Datetime 0% 1/1/18 1:52 

4 Description Represents description of 
the action 

String 0% Closed via client action 

5 TypeId An integer representing the 
type of action.  

Integer 0% 32 

6 OrganizationId An ID referencing the 
Organization that created 
this action. Refer to the 
"Org Name" excel sheet tab. 

Integer 0% 1104 

 
 

3.2 Highway trips 

Highway trip data includes two types of data files: Link travel time and Link shapefile.  
 

Link travel time 

This file provides travel time data from 2015 to 2018 for each individual link in the ICM-495 
corridor mapped with a unique link ID. The travel time data is provided every two-minute 
interval and aggregated by month, quarter and year. TRANSCOM also provides this real-time 
travel time in seconds. In this project, we will mainly use real-time link travel time data to 
calibrate and validate our recommended models. 
 
This file maps link ID with link travel time.  This link ID is also referenced in file “Event-Link ID 
Mapping” and Link shapefile. Therefore, we are able to obtain the link travel time before, 
during and after a specific traffic event. The link travel time for downstream and upstream of 
the link where the traffic event occurs are obtained after conducting a whole process of data 
analysis.   
 
 

Table 19. Link travel time mapped using a unique link ID. 
Details Field Name Description Format Missing 

Rate 
Link travel time 
every 2 minutes 
by day of week 

linkid Unique Identifier for each link in ICM-
495 

Integer 0% 

hhmm Hour : Minute Datetime 0% 
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for following 
a. Monthly 
b. Quarterly 
c. Yearly 
d. Real-time (not 
averaged) 
  

day0avgtt Average TravelTime of all sunday of 
month/quarter/year in seconds 

Integer 0% 

day1avgtt Average TravelTime of all monday of 
month/quarter/year in seconds 

Integer 0% 

day2avgtt Average TravelTime of all tuesday of 
month/quarter/year in seconds 

Integer 0% 

day3avgtt Average TravelTime of all wednesday of 
month/quarter/year in seconds 

Integer 0% 

day4avgtt Average TravelTime of all thursday of 
month/quarter/year in seconds 

Integer 0% 

day5avgtt Average TravelTime of all friday of 
month/quarter/year in seconds 

Integer 0% 

day6avgtt Average TravelTime of all saturday of 
month/quarter/year in seconds 

Integer 0% 

 Real-time_tt Real-time travel time of all 2-minute 
intervals in seconds 

Integer 0% 

 
 

Link shapefile 

This file provides an ESRI shapefile that uses NAD83 coordinate system. This file provides a map 
of all links in the ICM-495 corridor in both directions. The attribute table of this shapefile 
includes details such as number of lanes, length of links and direction of the link. In the files 
“Highway Events-Incidents/Construction/Special Events”, there are a lot of missing values 
(99.29%) in the field total number of lanes. This information is provided in the link shapefile. 
Table 20 shows detailed information that is provided in the link shapefile.  
 

Table 20. Attribute table in the link shapefile. 
Field Name Description 

link_id Refers to link ID that maps with TMC 
functionclass The function class of specific link 
highway_nm The highway name where specific link belongs 
length The length of link in meters 
postedspeedinmph The posted speed of link in mph 
direction The facing direction of the link, i.e. North, East, South, West, North 

East, North West, South West and South East 

state The state where link belongs 
county The county where link belongs 
ramp Ramps are connectors that provide access between roads that do 

not cross at grade. 
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route_type The route type indicates that the road’s name is actually a route 
number and in many 
countries is displayed in a shield symbol (i.e. Interstate and State 
routes in the U.S.). 

tollway This attribute identifies a link for which a fee must be paid to use the 
road. 

roundabout A roundabout is a contiguous loop with consistent one-way traffic 
throughout the circle 
that controls the traffic flow from converging roads. 

poing_desc The location description 
roadway The roadway name 
bridge Bridge is a structure that allows a road, railroad, or walkway to pass 

over another road, 
railroad, water feature, or valley. 

tunnel Tunnel is a covered passageway through or under an obstruction. 
phys_lanes Physical Number of Lanes indicates the total number of all lanes on a 

link across all travel 
directions. 

 
 

3.3 HPMS volume data 

HPMS volume data includes AADT by link IDs and corresponding hourly distribution factors. We 
can convert AADT for each link to hourly traffic volume by each link using an hourly distribution 
factor. Table 21 shows a description of HPMS volume data.  
 

Table 21. Description of HPMS volume data. 
Details Field Name Description 

AADT by link IDs link_id Unique ID of an link 
aadt Annual Average Daily Traffic 
aadt_singl Annual Average Daily Traffic for single-unit trucks and 

buses 
aadt_comb
i 

Annual Average Daily Traffic for Combination Trucks 

Hourly distribution 
factor 

VPROFILE Profilename 
hour value 0 to 23 
pct_hrly Hourly distributed percentage  
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4. Comparison of reviewed models and recommendations 
After a detailed review of the open literature, it was not possible to identify non-recurrent 
delay prediction models that are currently used by operations staff at a TMC as part of their 
real-time incident management operations. It is important to note that there might be 
operational models that are embedded in the proprietary software used by some TMCs, but 
such implementations are not generally published in the open literature. Thus, it is not possible 
to identify these as part of a literature review such as the one conducted in this project. One 
alternative way to get this type of additional information is to conduct a nation-wide interview 
of all the major TMCs. However, this can be very time-consuming and expensive effort which is 
definitely beyond the scope of this limited study. Finally, any predictive model should be able to 
work with TRANSCOM data for it to be appropriate for deployment by TRANSCOM and this 
requirement further limits the possibility of using off-the-shelf existing predictive models. For 
example, many existing models require real-time traffic volume as one of the critical inputs; the 
lack of traffic volume data in TRANSCOM data limits the use of many existing models. 
 
In this section, based on our comprehensive review of the literature presented in the previous 
sections, we recommend one model for each type of prediction task namely, impact duration 
prediction, traffic delay prediction/estimation, and queue length prediction. We first 
summarize the feedback obtained from the interviewed stakeholders. Based on this feedback, 
we propose several performance measures to compare and evaluate reviewed prediction 
models. This section is concluded by comparing the data needs of recommended models with 
TRANSCOM data.  
 
Based on the scope of work in this project, we identified that both travel time prediction and 
impact duration prediction can and should be done at the operations level. After interviewing 
TRANSCOM stakeholders, we compiled their responses and created a checklist of model 
requirements as shown in Table 22. 

4.1 Ideal model vs. existing models 

An ideal model should contain two components: the impact duration module, and travel time 
and queue length prediction module. The ideal model should be able to provide a prediction of 
these two components at the same time. Moreover, the ideal model should satisfy all of the 
requirements raised by the scope of work and stakeholders in our interviews, which are shown 
in Table 22. 
 
For the impact duration prediction module, an ideal model should satisfy only 4 points shown in 
the checklist, namely: (1), (4), (6), (8) and (10). 
 
For traffic delay and queue length prediction module, an ideal model should satisfy 8 points 
shown in the checklist: (1), (2), (3), (4), (5), (7), (8), (9) and (10). 
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Table 22 Checklist based on the scope of work (SOW) and interview feedbacks 
Number Requirements from SOW and interviews Ideal Possible 

① Both travel time prediction and impact duration 
prediction should be done at an operations level. √ √ 

② Provide travel time prediction at least for the 
impacted zone, then expand to a corridor, and/or 
alternative corridors with further effort.  

√ √ 

③ Provide travel time prediction and parameters by 
vehicle type and by lane. √ × 

④ Should work with the current TRANSCOM dataset. √ √ 
⑤ Provide travel time prediction with consideration 

of roadway closures. √ √ 

⑥ Provide duration prediction for incidents that last 
more than 30 minutes. The model should also be 
able to predict incidents within 30 minutes, 
especially at peak hour/high demand routes. 

√ √ 

⑦ Provide a range of predicted travel times instead 
of a single value.  This predicted travel time should 
be updated every 5 minutes. It is better to also 
provide the distribution of predicted travel times 
with corresponding confidence levels. 

√ √ 

⑧ The accuracy of the predicted travel time/impact 
duration within +/- 10% error. Stakeholders agree 
to sacrifice accuracy to get a longer prediction 
time window. 

√ √ 

⑨ Provide real-time prediction of the queue length. √ √ 
⑩ Can disseminate different levels of prediction 

information to different levels of agencies, 
stakeholder, decision-makers, and partners. 

√ √ 

 
However, after a careful investigation of the literature, we find that a single model cannot 
address all of the above points included in the checklist at the same time. However, by 
combining several candidate approaches, one can manage to cover 9 out of 10 points in the 
checklist. Besides, there are no operations models reported in the literature that can predict 
travel time by vehicle type and by individual lane to the best of our knowledge. TRANSCOM 
data, as of its current version, does not have lane-based or vehicle-type-based travel time. 
Therefore, it is not possible to meet the third requirement with existing data sources and 
prediction models available in the literature. 
 
We then compared reviewed models using the checklist in Table 22, and four other 
performance measures explained in the following section. After a detailed comparison, we 
recommend the most appropriate models for the prediction of impact duration, travel and 
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queue length in the presence of a non-recurrent event, given the availability of both historical 
and real-time TRANSCOM data. 

4.2 Model comparison 

Based on the scope of work of this project and the feedback from the stakeholder meetings, we 
developed four performance measures to further evaluate reviewed models. 
 

4.2.1 Operations versus planning 

One of the significant needs identified from user feedbacks is the requirement for the 
recommended model(s) to be for “operations” use only. An operations model should be able to 
provide predictions based on the limited information that becomes available during real-time 
incident management operations. The recommended model should be able to work in real-time 
and provide on-line predictions. For impact duration prediction, it should be able to use time-
sequential data and provide updated predicted duration with new information becoming 
available as the incident management operations progress. However, many studies in the 
literature propose “one-time” models which can only be used mostly for planning purposes. 
These models can only work with historical data and provide impact duration prediction with 
complete data that can only be available after the full clearance of an incident. In summary, the 
first performance function in terms of recommending a model in this study is that it should be a 
model specifically suited for real-time  “operations”. 
 

4.2.2 Prediction of a single value versus a range of values  

Most stakeholders interviewed in the first task of this study mentioned a need for a range of 
predicted travel times rather than a single value. Non-recurrent congestion can cause 
significant interruptions to regular traffic patterns.  Travel times in the presence of such non-
recurrent congestion can thus fluctuate due to the stochasticity and possible modeling errors 
on a case by case basis.  The probabilistic distribution of predictions can capture such 
randomness and uncertainties in a way a single point estimate cannot.  This travel time 
prediction approach can also help agencies in the decision-making process by providing them 
with a range of values including, minimum, maximum, and average travel times. In fact, during 
the agency interviews, the team found out that many agencies prefer to disseminate different 
levels of predicted information (an upper and lower bound or an average expected travel time) 
within their agency, to their stakeholders and travelers depending upon such factors as their 
confidence in the model predictions and severity of the non-recurrent event.  Thus, the second 
performance measure is that the recommended model should be able “to generate a range of 
predicted values rather than a single value to give the agencies flexibility in interpreting and 
disseminating results.” 
 

4.2.3 Analytical versus data-driven 

Based on the findings of the extensive literature review, it is apparent that most of the non-
recurrent delay models are analytical models. These analytical models include queuing-based 
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delay models or shock-wave based models. One common shortcoming of these models is that 
they cannot provide predictions with missing data/parameters. Moreover, analytical models 
cannot generally work in real-time due to extensive data input and model output analysis 
requirements that are not suitable for real-time operations. More importantly, all of these 
models require actual volumes and reduced capacities in order to predict delays.  However, 
TRANSCOM currently does not acquire real-time volume data from most of its agencies and lack 
of real-time volume (demand) data makes all of these analytical models infeasible for 
operations use at this time. On the other hand, data-driven models can learn traffic patterns 
such as speed-profiles without knowing the details of non-recurrent traffic events as well as 
current traffic demand. The third performance measure is that the recommended predictive 
model should be “data-driven and should be able to be trained using currently available 
TRANSCOM data only.” 
 

4.2.4 Compatibility with TRANSCOM data 

During the process of managing incidents in real-time, it is common that operators need to 
make decisions based on limited information. For impact duration prediction models, many of 
the reviewed models require data that is not currently available from TRANSCOM in real-time 
although some of it may become available after the incident is cleared. For example, most 
Classification Tree Method (CTM) models require operations data as key inputs, which is not 
provided in the TRANSCOM dataset. Therefore, we require our recommended model(s) to work 
with limited data, especially in real-time. Thus, the fourth performance measure is that the 
recommended model should be highly compatible with TRANSCOM data and be able to predict 
delay with some data missing.  
 

4.2.5 Summary of model comparison 

Impact duration prediction 
For impact duration predictions, we compared models by checking if they meet the 
performance measures of (3.2.1) operations vs. planning, (3.2.2) prediction of a single value 
versus a range of values, (3.2.3) analytical versus data-driven and (3.2.4) compatibility with 
TRANSCOM data. 
It is apparent from Table 23 that most regression models and classification tree methods suffer 
from low compatibility with TRANSCOM data. For Bayesian network models, although Ozbay 
and Noyan (19) and Demiroluk and Ozbay (1) are found to have medium compatibility with 
TRANSCOM data. However, due to the flexibility of Bayesian networks (BN), their model can 
provide reasonable impact duration predictions with limited data information and missing 
values. When more data becomes available, their model can update itself and provide updated 
and reliable predictions. Wei and Lee (17) achieved an accurate impact duration prediction 
through Artificial Neural Networks. Their model is highly compatible with the TRANSCOM 
dataset and can deal with sequential data. However, their model is computationally expensive 
and that may lead to a low prediction frequency and cannot be used for real-time operations. 
Khattak’s model (8) reported a reasonable MAPE as 37%, and the model can deal with 
sequential data and is highly compatible with the TRANSCOM dataset. Since it is a regression 
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model, it requires low computational effort and can provide a prediction for less than 5 
minutes. However, its actual accuracy for complex networks and traffic conditions is not tested 
using extensive field data. Qi and Teng (23) proposed a hazard-based method and reported to 
provide better accuracy as more data becomes available in a time sequence. Their model is 
highly compatible with the TRANSCOM dataset and requires low computational effort. 
 
 
 
 
 
 

Table 23 Comparison results of impact duration prediction models. 
 Model Operation

s use? 
Sequential/one

-time model 
TRANSCOM 
compatibilit

y 

Checklist – 

Regression 
models 

Khattak et 
al., 1995 
(1.1.1) 

Yes Sequential Low ①⑥ 

Garib et 
al., 1997 
(1.1.2) 

No One-time Medium ④ 

Peeta et 
al., 2000 
(1.1.3) 

No One-time Low ④ 

Khattak et 
al., 2016 
(1.1.4) 

Yes Sequential High ①④⑥ 

Yu and Xia, 
2012 

(1.1.5) 

No One-time Low ⑥ 

Weng et 
al., 2015 
(1.1.6) 

No One-time Low ⑥ 

Classification 
Tree 

Methods 

Ozbay and 
Kachroo, 

1999 
(1.2.1) 

Yes Sequential Low ①⑥ 

Smith et 
al., 2002 
(1.2.2) 

No Sequential Low ⑥ 

Knibbe et 
al., 2006 
(1.2.3) 

No Sequential Low ⑥ 
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He et al., 
2013(1.2.4) 

Yes Sequential Medium ①④⑥ 

Zhan et al., 
2011 

(1.2.5) 

Yes Sequential Low ①⑥ 

Artificial 
neural 

network 

Wei and 
Lee, 2007 

(1.3.1) 

Yes Sequential High ①④⑥ 

Park et al., 
2016 

(1.3.2) 

Yes Sequential Medium ①④⑥ 

Bayesian 
networks 

Ozbay and 
Noyan, 
2006 

(1.4.1) 

Yes Sequential Medium ①④⑥ 

Boyles et 
al., 2007 
(1.4.2) 

Yes Sequential High ①④⑥ 

Ji et al., 
2008 

(1.4.3) 

No Sequential Low ⑥ 

Shen and 
Huang, 
2011 

(1.4.4) 

No Sequential Low ⑥ 

Demiroluk 
and Ozbay, 

2014 
(1.4.5) 

Yes Sequential Medium ①④⑥⑧
⑩ 

Hazard-
based model 

Qi and 
Teng, 2008 

(1.5.1) 

Yes Sequential High ①④⑥⑧ 

SVM Yu et al., 
2016 

(1.6.1) 

No One-time Low ⑥ 

 
Traffic delay estimation 
For traffic delay estimation models, we compared models by checking if they meet the 
performance measures of (3.2.1) operations vs. planning, (3.2.2) prediction of a single value 
versus a range of values, (3.2.3) analytical versus data-driven and (3.2.4) compatibility with 
TRANSCOM data. 
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Different from analytical delay prediction models, data-driven models can learn the features 
from real-time data and generate reliable predictions as long as the models are well 
trained/customized. Hojati’s model (42) can quantify the increase in travel time due to the 
occurrence of non-recurrent incidents by learning standard travel speed profiles and comparing 
them with incident-based travel speed profiles. However, Hojati’s model cannot predict travel 
times in the presence of incidents. The hybrid ARIMA model proposed in (47) is able to predict 
travel times with particular timestamps after the occurrence of an incident. However, it cannot 
generate a range of predicted travel times. For queue length estimation, we identified three 
methods presented in (45), (46), and (3). All of them employed machine-learning techniques 
and can identify affected road segments due to the presence of an incident. However, certain 
important drawbacks exist in Martino’s (45), and Yue’s (46) model. Martino’s model focused 
only on special events such as sports events and concerts. Substantial additional effort will be 
required if one wants to extend this model to other types of non-recurrent incidents. Yue’s 
model is not directly used for prediction purposes. It is, however, possible to borrow the idea of 
defining the impacted roadway segments and adapt it to TRANSCOM’s database to estimate 
new predictive models. Ghosh’s (3) model is used directly for predicting queue length of non-
recurrent incidents, and this model can be  re-estimated with TRANSCOM data for operations 
use. Yu’s model (2) can provide real-time travel time predictions after the occurrence of non-
recurrent traffic incidents. Their model achieves the highest accuracy among all reviewed 
models for traffic delay estimation/prediction. One added advantage of this model is that it was 
trained and tested with 5-minute link travel time data which makes it promising in terms of 
compatibility of its findings given the similarity of TRANSCOM travel time database. 
 

Table 24 Comparison of traffic delay estimation/prediction models. 
Model Operations 

use? 
Analytical 
or data-
driven 

A range 
or single 

value 

TRANSCOM 
Compatibility 

Checklist 

Khattak et 
al., 2012 
(2.1.1) 

Yes Analytical Single 
value 

Low ①②⑤⑨ 

Li et al., 
2006 

(2.1.2) 

Yes Analytical Range Low ①②⑤⑦⑨ 

Cassidy 
and Han, 

1993 
(2.1.3) 

Yes Analytical Single 
value 

Medium ①②⑤⑨ 

Jiang, 1999 
(2.1.4) 

Yes Analytical Single 
value 

Medium ①②⑤⑨ 

Chien and 
Schonfel, 

2001 
(2.1.5) 

Yes Analytical Single 
value 

Low ①②⑤⑨ 
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Jiang and 
Adeli, 2003 

(2.1.6) 

Yes Analytical Single 
value 

Low ①②⑤⑨ 

Chitturi et 
al., 2008 
(2.1.7) 

Yes Analytical Single 
value 

Medium ①②⑤⑨ 

Ramezani 
and 

Benehokal, 
2011 

(2.1.8) 

Yes Analytical Single 
value 

Low ①②⑤⑨ 

Ullman and 
Dudek, 
2003 

(2.1.9) 

No Analytical Single 
value 

Low ①②⑤⑨ 

Garib et al., 
1997 

(2.2.1) 

Yes Data-driven Single 
value 

Low ①②⑤ 

Hojati et 
al., 2016 
(2.2.2) 

Yes Data-driven Single 
value 

High ①②④⑤ 

Javid et al., 
2018 

(2.2.3) 

Yes Data-driven Single 
value 

High ①②④⑤ 

Caceres et 
al., 2016 
(2.2.4) 

Yes Data-driven Range High ①②④⑤⑦⑩ 

Martino et 
al., 2019 
(2.2.5) 

No Data-driven Single 
value 

High ④⑨ 

Yue et al., 
2017 

(2.2.6) 

No Data-driven Single 
value 

High ④⑨ 

Pan et al., 
2012 

(2.2.7) 

Yes Data-driven Single 
value 

High ①②④⑤ 

Ghosh et 
al., 2017 
(2.2.8) 

Yes Data-driven Single 
value 

High ①④⑨ 

Chen and 
Rakha, 
2014 

(2.2.9) 

Yes Data-driven Range High ①②④⑤⑦⑧⑩ 
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Yu et al., 
2018 

(2.2.10) 

Yes Data-driven Single 
value 

High ①②④⑤⑧⑩ 

 

4.3 Final model recommendation 

During the literature search process, we aimed to find a model that can both provide real-time 
impact duration prediction and traffic delay prediction/estimation as well as queue length 
prediction. However, as a result of the detailed review of the existing literature, we found that 
no single model is able to predict impact duration, traffic delay, and queue length at the same 
time. Moreover, we could not find models that are currently used by operations staff for real-
time operations. Therefore, we classified and then reviewed models for impact duration 
prediction, traffic delay prediction/estimation, and queue length prediction seperately.  
 
After comparing models in detail in the light of the feedback obtained from interviews, we 
recommend three separate models. Specifically, we recommend one approach for impact 
duration prediction, one approach for incident delay estimation/prediction, and one for queue 
length prediction. Table 25 shows a summary of our recommended models.  
 
The approach recommended for impact duration prediction is the Bayesian network approach 
proposed by Demiroluk and Ozbay (1) since it is the most appropriate model for use in real-time 
operations.  Although the current TRANSCOM database does not contain all the needed data to 
calibrate the parameters of this model, to the best of our knowledge, several TRANSCOM 
agencies such as NJ Turnpike Authority and NY Thruway Authority collect the missing 
information.  Thus, this model can be estimated in a limited fashion to test its accuracy and 
usefulness. This model can also deal with incident data becoming sequentially available during 
the incident management operation, have reasonable accuracy, and very low computational 
cost. Moreover, this model covers most of the requirements identified in the interview checklist 
shown in Table 22. For traffic delay estimation/prediction, we recommend Yu’s model (2) due 
to its capability of online prediction and high prediction accuracy. Moreover, this model has 
automatic calibration which is convenient for re-calibration. Finally, for the queue length 
prediction, we recommend Ghosh’s model (3) for predicting real-time queue length with 
reasonable accuracy using TRANSCOM’s travel time data only.  
 
 

Table 25 Summary of recommended models 
Model Operations 

use? 
TRANSCOM 

Compatibility 
%Checklist 
Satisfaction 

Highlights 

Demiroluk 
and Ozbay, 
2014 (1.4.5) 

Yes Medium 100% Bayesian network, 
interpretable, adaptive 

learning, real-time 
prediction, operations 
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Yu et al., 2018 
(2.2.10) 

Yes High 71% Time-series (RNN), travel 
time prediction, deep 
learning model, high 

accuracy, reliable 
Ghosh et al., 
2017 (2.2.8) 

Yes High 100% Queue length prediction, 
machine learning model, 

real-time, operations, 
reliable 

 
 

4.4 Comparison of TRANSCOM data and data needs of recommended models 

In this section, we will compare TRANSCOM current data availability with the data needs of our 
recommended models.  
 

Demiroluk and Ozbay’s model (2014) (1) 

Demiroluk and Ozbay’s model (1) was developed with incident data obtained from 
transportation agencies in New Jersey. Incident and operations data such as the number of 
response agencies involved and the number of vehicles involved were used in the development 
of this model. No such information is currently available in the TRANSCOM dataset, as shown in 
Table 26. Therefore, we will not be able to calibrate this duration model using all of the 
variables employed in the original model. However, due to the flexibility of Bayesian networks 
(BN), we can remove unavailable variables in the TRANSCOM data and calibrate BN model using 
the available information. As shown in Table 26, both weather and pavement data in the 
TRANSCOM database have a lot of missing values (more than 99%). Therefore, we can calibrate 
the BN model using attributes/variables that have a small number of missing values, such as 
time data (“Month”, “DayofWeek”, “TimeofDay”), incident data (“CrshType”) and location data 
(“Location”, “Distance”). It is important to note that the shaded area in Table 26 represents the 
additional variables needed to be collected by TRANSCOM in the next stepto improve the 
capability of this model. With the collection of these variables, we can replicate the settings of 
Demiroluk and Ozbay’s model (1) and provide reliable predictions. Their model can also provide 
duration prediction with limited data information. Therefore, at an early stage of a traffic 
incident, this model can work and provide a short-term prediction with missing data. The model 
becomes more accurate as it gets more data from the response team at the scene of an 
incident. This model can work with missing data and provide a predicted distribution of impact 
durations. Therefore, this model will provide more reliable prediction if and when more 
detailed incident information becomes available.  
It is also important to note that this model can produce the prediction of incident clearance and 
incident recovery times. The incident clearance time can be determined directly by the start 
and end time of a reported incident. However, there is no direct way to determine the incident 
recovery time through the reported start and end time of a traffic incident. Instead, the 
recovery time needs to be estimated by comparing the travel time under incident conditions 
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and normal conditions. In this study, we reviewed and proposed a way of estimating incident 
recovery time using the approach described in Section 1.7. 
 

Table 26 Detailed data needs from model and its compatibility with TRANSCOM data  
 Variables Descripti

on 
TRANSCOM 
data 

File 
name 

Field name Missin
g rate 

Weather 
data 

Weather Weather 
condition
s 

● Highway 
Events 

xcm_WeatherCondi
tion 

 

99.98
% 

Time 
data 

Month Month of 
year 

● Highway 
Events 

StartDateTime 
/ 

EndDateTime 

0.02% 

DayofWeek Day of 
week 

● Highway 
Events 

StartDateTime 
/ 

EndDateTime 

0.02% 

TimeofDay Time of 
day 

● Highway 
Events 

StartDateTime 
/ 

EndDateTime 

0.02% 

Incident 
data 

NumFat Number 
of 
fatalities 

    

NumInj Number 
of 
injuries 

    

CrshType Type of 
crash 

● Highway 
Events 

eventType 0.02% 

VehNo Number 
of 
vehicles 
involved 

    

Roadwayda
mage 

Presence 
of 
roadway 
damage 

    

NumTrkInv Number 
of trucks 
involved 

    

Location 
data 

Pavement Pavemen
t 
condition
s 

● Highway 
Events 

xcm_PavementCon
dition 

100% 



103 
 

Location Link 
where 
incident 
is located 

● Event-
Link ID 

mapping 

LinkId 
 

0% 

Distance Distance 
from the 
closest 
exit 

● Highway 
Events 

PointLAT/PointLON 0.02% 

Light 
data 

Light Lighting 
condition
s 

    

The shaded green area represents the data that is not currently collected or collected rarely by 
TRANSCOM and needs to be collected in the future to improve model estimation and prediction. “●” 
represents the data currently available in the TRANSCOM database. 
 
 

Yu’s model (2017) (2)  

Yu et al (2) proposed two neural network models for travel time prediction. The format of the 
travel time dataset they used is similar to the TRANSCOM dataset’s format. Their model 
requires time data (“Month”, “DayofWeek”, “TimeofDay”), incident data (“IncidentType”), 
location data (“Direction”, “Location”) and travel time data (“Travel Time”) as input variables. 
Specifically, the model requires travel time data with 5-minute aggregation, TRANSCOM can 
provide travel time with aggregation as small as 2-minutes. As shown in Table 27, TRANSCOM 
provides available data for all these required variables with a small percentage (less than 1%) of 
missing values. Therefore, we will be able to calibrate and validate the model using the 
provided TRANSCOM data.  
 
Training and calibrating this model requires relatively substantial computational resources. We 
recommend implementing this model if high-performance computing resources that exist at 
NYU are available for initial training, calibration, and testing. Please note that this is only 
required for initial calibration and validation and these models when successfully calibrated can 
be operationalized in a standard PC for day to day usage.  
 

Table 27 Detailed data needs of Yu’s model and its compatibility with TRANSCOM data 
 Variables Description TRANSCOM 

data 
File 
name 

Field 
name 

Missing 
rate 

Time 
data 

Month Month of year ● Link 
Travel 
Time 

hhmm 0% 

DayofWeek Day of week ● Link 
Travel 
Time 

hhmm 0% 
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TimeofDay Time of day ● Link 
Travel 
Time 

hhmm 0% 

Incident 
data 

IncidentType Type of incident ● Highway 
Events 

eventType 0.02% 

Location 
data 

Direction Incident 
direction 

● Highway 
Events 

Direction 0.02% 

Location Incident location ● Event-
Link ID 

mapping 

LinkId 0% 

Travel 
time 
data 

Travel time Link travel time 
(5 minutes 
aggregation) 

● Link 
Travel 
Time 

Real-
time_tt 

0% 

“●” represents the data currently available in the TRANSCOM database. 
 

Ghosh’s model (2017) (3) 

Ghosh et al. (3) proposed a cascaded classification-regression model to predict the queue 
lengths. They adopted travel time data having a similar format to the format of TRANSCOM 
dataset. Their model requires time data (“Month”, “DayofWeek”, “TimeofDay”), incident data 
(“IncidentType”), location data (“Direction”, “SegementLength”, “Shoulder”, “Total_Lanes”, 
“Num_Lanes”, “Type_Lanes”) and travel time data (“Travel Time”). Table 28 shows a relatively 
high percentage of missing values (45.29%) in the data for variables “Shoulder”, “Num_Lanes” 
and “Type_Lanes”. Therefore, there is a potential need to remove data records with missing 
values and calibrate the model using the rest of the available data. Therefore, through proper 
data processing, we can calibrate and validate their model using available TRANSCOM data. 

Table 28 Detailed data needs of Ghosh model and its compatibility with TRANSCOM data  
 Variables Description TRANSCOM 

data 
File 
name 

Field name Missing 
rate 

Time 
data 

Month Month of 
year 

● Link 
Travel 
Time 

hhmm 0% 

DayofWeek Day of week ● Link 
Travel 
Time 

hhmm 0% 

TimeofDay Time of day ● Link 
Travel 
Time 

hhmm 0% 

Incident 
data 

IncidentType Type of 
incident 

● Highway 
Events 

eventType 0.02% 

Location 
data 

Direction Incident 
direction 

● Highway 
Events 

Direction 0.02% 
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SegmentLength Length of 
segment 

● Link 
Shapefile 

length 0% 

Shoulder Whether 
the 
shoulder is 
involved 

● Highway 
Events 

LanesDetail 45.29% 

Total_Lanes Total 
number of 
lanes 

● Link 
Shapefile 

phys_lanes 0% 

Num_Lanes Number of 
affected 
lanes 

● Highway 
Events 

LanesDetail 45.29% 

Type_Lanes Type of 
affected 
lanes 

● Highway 
Events 

LanesDetail 45.29% 

Travel 
time 
data 

Travel time Link travel 
time (5 
minutes 
aggregation) 

● Link 
Travel 
Time 

Real-
time_tt 

0% 

The shaded green area represents the data that is not currently collected or collected rarely for by 
TRANSCOM and needs to be collected in the future to improve model estimation and prediction. “●” 
represents the data currently available in the TRANSCOM database. 
 

5. System requirements for an ideal predictive tool 
 
Based on the assessment of the needs previously described in this report, it can be claimed that 
TRANSCOM and their member agencies must collaborate and adopt a computerized map-
based/table-based tool or a data-feed service that is part of an implementation framework that 
can employ TRANSCOM’s real-time data feed to provide operations personnel with predictive 
duration/delay/ queueing information in the presence of non-recurrent delays. This section lays 
out the desired functional requirements of this predictive framework that can be implemented 
as an operations software. 
 
The main goal of this section is thus to clearly describe the functionalities of an “ideal data-
driven predictive non-recurrent duration/delay estimation framework” based on the 
outcomes of the previous literature study. The framework presented in this section needs to be 
integrated into a map-based/table-based software tool or a data-feed service that incorporates 
all the functionalities that are deemed essential for the operations of non-recurrent traffic 
events.  
Figure 31 illustrates the framework of an ideal computerized tool for helping operate non-
recurrent traffic incidents/events. As seen in the figure, all current and historical traffic incident 
information and travel time data from TRANSCOM and other agencies are fed to an extended 
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traffic database for calibration and validation purposes. This extended database should be 
hosted at a server within the agency and automatically extracted to an online database via 
periodic XML feeds. The information within this online database can then be reached, queried, 
and used via a map-based/table-based software interface or a data-feed service. This map-
based/table-based software interface or data-feed service can be built into TRANSCOM’s 
software platform and accessed by only authorized users.  
 

 

Figure 31. Framework of ideal predictive non-recurrent estimation delay tool. 
 
The following subsections briefly outline the desired functionalities of the proposed ideal 
predictive non-recurrent estimation delay tool.  
 

5.1. Maintain a database of non-recurrent events 

 
This tool should be able to store and display detailed information about all historical and 
current non-recurrent traffic events (accident, construction event, special event). Information 
should include the event ID, description, event type, number of lanes affected, type of lanes 
affected, event start and end time, event location (coordinates, link ID), and the division of 
operations information.  
This tool should provide a map-based/table-based interactive user-interface to allow the ease 
of entering input information and visualizing outputs for users. For example, on the front-end, 
when a traffic incident is reported, a traffic operator should be able to enter necessary 
information via a user-interface and visualize the location of this incident on the map. On the 
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back-end, the online traffic database should be able to query the inputs from operators and 
match the link ID of the incidents. The map-based user-interface should also display outputs 
such as estimated delay, duration and queue length on the map. This functionality provides 
operators with a good representation of predicted results and a better understanding of the 
impact caused by current traffic incidents. 
 
This tool should also be able to store and update a certain period of recent real-time travel time 
information. For example, when a traffic incident is reported using the tool, the traffic database 
should automatically acquire a certain period of recent travel time data needed for prediction 
functions.  
 
The traffic database should also automatically calculate and then disseminate the model 
predictions such as impact duration, delay and queue length to relevant stakeholders. 
Moreover, the database should also be designed in a way that it can easily be integrated with 
TRANSCOM’s OpenReach database as well as its current user interface.  
 

5.2. Traffic impact duration prediction 

 
It is vital to provide a real-time prediction of traffic impact duration for a non-recurrent traffic 
incident. As outputs of this functionality, this tool must provide online and reliable predictions 
for the clearance and recovery times of a non-recurrent traffic event. When an incident is 
reported, this tool must provide a short-term prediction of incident duration with limited 
information such as incident type, start time and location. As the incident clearance operation 
progresses, additional information acquired by the operator will be entered and an updated 
predicted impact duration will be calculated and made available to traffic operators.  
 
It should be noted that the successful implementation of the duration prediction functionality 
significantly depends on the available incident information. As mentioned in previous sections, 
the minimum required parameters for traffic impact duration prediction include weather 
conditions, time of the incident, incident location (coordinates, link ID) and incident type. These 
parameters are used to predict the duration of traffic incidents at a very early stage. In order to 
provide updated and more reliable predictions of traffic incident duration, this functionality 
requires additional data such as the existence of  property damage, injuries and fatalities, 
existence and number of disabled vehicle, whether or not road repair/work is involved, the 
number of vehicles involved, number of lanes closed, whether or not a police department is 
involved and, whether or not a tow truck or fire truck is involved.  
 
Therefore, this functionality requires the acquisition of real-time incident scene data that needs 
to be uploaded continuously to obtain updated prediction results. As per the interviews, the 
ideal tool requires this functionality to provide updated predictions every 5-minutes. Moreover, 
this functionality should provide an immediate update of its prediction when there are major 
changes in terms of the real-time incident information.  
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In summary, the outputs of this functionality include the initial predicted incident clearance 
time, updated predicted incident clearance time and recovery time. It is important to note that 
incident clearance time can be calculated directly through the reported start and end time. 
However, there is no direct way to calculate incident recovery time from the reported historical 
data because unlike incident clearance times, recovery times are not recorded. One alternative 
way to determine the recovery time is to compare travel time observed during the incident and 
normal traffic conditions (see Section 1.7) and try to indirectly identify incident recovery times 
(time to normal flow). Table 29 shows a summary of the system requirements of this 
functionality. 
 

Table 29. Summary of system requirements for traffic impact duration prediction. 

Model inputs 

Minimum: weather conditions, day and time 
of the incident, incident location, incident 

type 
Ideal: existence of property damage, injuries 

and fatalities, existence and number of 
disabled vehicles involved, existence of  road 

repair/ work zone, the number of vehicles 
involved, number of lanes closed, whether or 
not police department is involved, whether 

or not tow / fire truck is involved 

Model outputs Incident clearance time 
Incident recovery time* 

Time from incident detection to the first 
prediction 

5 minutes (immediate if major changes), 
work with limited information 

Time interval to next updated prediction 
5 minutes, update as soon as new and 

significantly different information becomes 
available 

* Incident recovery time needs to be indirectly estimated through travel time data. Thus, it will 
be an approximation of the actual recovery time since ground truth data that can be used to 
validate the exact recovery time does not exist. A heuristic method to estimate recovery time 
from observed travel times and recorded clearance times need to be developed as part of this 
functionality.  However, the details of this approach will require additional work that is beyond 
the scope of this work. It is also important to note that physical queueing models cannot be 
used due to the absence of volume data required by all the queuing models.  

5.3 Traffic delay estimation/prediction 

 
It is important to provide real-time estimation/prediction of the delay that would be caused by 
the non-recurrent traffic events. The outputs of this functionality include incident induced 
travel time prediction and queue length prediction.  
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It should be noted that the successful implementation of this functionality depends greatly on 
the available real-time link travel times as well as details of the incident. As mentioned in the 
previous subsection, this functionality requires recent real-time travel time data as the main 
input. For example, a successful prediction of one-hour after the occurrence of a traffic incident 
may require the past one-week travel time data. Such data should be automatically extracted 
from the historical traffic information database and updated in the online database.  
The required parameters for travel time prediction include 5-minute link travel time data, 
incident type, day and time of the incident, incident direction and incident location 
(coordinates, link ID). These parameters are used to estimate travel time distribution after the 
detection of a traffic incident. For queue length estimation/prediction, the required parameters 
include day and time of the incident, incident type, incident direction, length of the segment 
where the incident occurred, whether or not shoulder is involved, number of lanes affected, 
type of lanes affected and 5-minute link travel times. It is important to note that this tool will 
only focus on predicting queues on highways only not on urban streets due to their inherent 
complexities.  
 
In summary, the outputs of this functionality include predicted link travel time after the 
detection of a traffic incident, the average estimated traffic delay and queue length estimation 
for individual links. It should be noted that real-time prediction of travel time and queue length 
might require a processing time which may be up to 5 minutes.  Users will obtain predictions 
once they input incident related data into the tool through the use of a map-based interface 
mentioned previously in this section. 
Table 30 shows a summary of the system requirements for this functionality. 
 

Table 30. Summary of system requirements for traffic delay estimation/prediction. 

Model inputs 

Travel time prediction: 5-minute link travel 
time data, incident type, day and time of the 

incident, incident direction and incident 
location 

Queue length estimation: day and time of 
the incident, incident type, incident direction, 

length of the segment where incident 
happens, whether or not shoulder is 

involved, number of lanes affected, type of 
lanes affected and 5-minute link travel time 

data 

Model outputs 
Post-incident travel time 

Average traffic delay 
Link-based queue length 

Time from incident detection to the first 
prediction 

Travel time prediction: up to 5 minutes. 
Queue length estimation: 5 minutes, work 

with limited information 
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Time interval to next updated prediction 
5-minutes, update as soon as new and 

significantly different information becomes 
available 

 

6. A preliminary assessment of development, calibration and 
implementation efforts required for recommended models 
 
In Section 4.4, we compared TRANSCOM data with the data needs of our recommended 
models. With the comparison between TRANSCOM data and recommended data needs, we 
identified the efforts for data preparation, cleaning, and mining in order to calibrate each 
recommended model in this section. Moreover, we also identified the time and efforts for 
model development and training for each recommended model.  
At the very end, users will have a clear understanding of the potential time and efforts for the 
development, calibration, and implementation of these recommended models. 
 

Demiroluk and Ozbay’s model (2014) (1) 

In this subsection, we will describe the data preparation effort in order to calibrate and 
implement Demiroluk and Ozbay’s model. Specifically, we include the efforts of collecting 
additional data compared to available TRANSCOM data, data processing, and model training. At 
the end of this subsection, we will also provide a rough estimated time of applying data 
preparation and calibration respectively. 
 

Data preparation and calibration 

 
The data preparation effort will start with additional data collection. As shown in Table 31, we 
carefully compared TRANSCOM data with the data needs of this recommended model and 
determined what additional variables are needed for calibrating this duration prediction model.  

Table 31. Data collection required for additional variables needed by this model. 
 Variables Description 
Incident data NumFat Number of fatalities 

NumInj Number of injuries 
VehNo Number of vehicles inolved 
Roadwaydamage Presence of roadway 

damage 
NumTrkInv Number of trucks involved 

Light data Light Lighting conditions 
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Table 32 shows data processing and preparation effort required to calibrate Demiroluk and 
Ozbay’s model. As shown in Table 32, the minimum required variables for calibration include 
weather conditions, day and time of the incident, incident location (coordinates, link ID) and 
the type of incident. The ideal variables required by the calibration include the existence of 
property damage, injuries, and fatalities, the number of vehicles involved, number of trucks 
involved, pavement conditions, distance from the closet exit, light conditions. 
 
Table 32 also shows minimum amount of data required for calibration and implementation. 
Specifically, calibrating this model requires traffic incident data for a period of at least six 
months or more. To implement this model in real-world cases, traffic operators will need to 
input the required variables for the specific incident. 

Table 32. Data preparation effort required for model calibration and implementation. 
Minimum variables required for calibration Weather conditions (snow, rain), time and 

day of incident, incident location 
(coordinates, link ID), incident type 

Ideal variables required for calibration Existence of property damage, injuries and 
fatalities, number of vehicles involved, 
number of trucks involved, pavement 
conditions, distance from the closet exit, light 
conditions 

Minimum amount of data needed for 
calibration 

6-months of traffic incident data 

Minimum amount of data needed for real-
world implementation 

Details of the current traffic incident in real-
time 

 
As mentioned in the data analysis section (Section 3), a large amount of noise exists in the raw 
dataset. Therefore, some potential efforts of data processing are listed: 

 Remove the data with missing values from more than 60% of all the data 
 Match event data with event action data via event ID 
 Match link travel time with traffic incidents by link ID and coordinates 
 Convert “type of affected lanes” to “number of lanes affected” 
 Calculate incident clearance time based on reported start and end time of the 

incident 
 Calculate incident recovery time based on the difference of mean and variance 

of normal traffic speed and reduced traffic speed 
 Other data cleaning tasks on an as needed basis 

As a preliminary estimate, data processing can be as long as 6 months depending on the 
specifics of the databases that need to be processed and combined. The data processing takes 
time when received volume of data is large and the time of downloading and acquiring data 
may be long. Moreover, the research team may have to create a database to maintain all 
received data and update it when there are changes in data format. For example, the research 
team may receive and process the dataset with variables that are minimum required for 
calibration. When more data information mentioned in ideal variables required become 
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available, the research team may need to update the database and process the updated 
dataset. Furthermore, the research team has not worked on how to filter the erroneous data 
which may require additional work and literature search. 
 
This model will require a minimum time of six months for model training, calibration, validation, 
and computer implementation. However, one advantage of this model is its self-learning 
capability, which avoids the need for re-calibration. As per the interview results, the desired 
accuracy of calibration between ground truth data and trained prediction results is +/- 10% 
error and this model will re-calibrate automatically to maintain this level of accuracy. Table 33 
shows a summary of estimated time for data processing, model calibration, training, and 
computer implementation. 

Table 33. Estimated time for data processing and calibration efforts for Demiroluk and Ozbay’s 
model. 

Estimated minimum time for data processing 6 months 
Estimated minimum time for model training, 

calibration, validation, and computer 
implementation1 

6 months 

Need to be re-calibrated? Automatic calibration 
Training accuracy need to achieve +/- 10% error 

 

Yu’s model (2017) (2) 

In this subsection, we will describe the effort of data preparation in order to calibrate and 
implement Yu’s model (2). As mentioned above, the data needs of this model are highly 
compatible with TRANSCOM’s available data. Therefore, there is no need to collect additional 
variables for further calibration. Instead, we mainly describe the efforts of data processing and 
model training. At the end of this subsection, we will also provide a rough estimated time of 
applying data preparation and calibration, respectively. 
 

Data preparation and calibration 

Table 34 shows the required variables in order to calibrate Yu’s model (2), including 5-minute 
link travel time data, day and time of the incident, incident type, direction of the incident, and 
incident location. Moreover, Table 34 also mentions the minimum data required for calibration 
and implementation. Specifically, calibrating this model requires at least one year of historical 
traffic incident data. For a computer implementation of this model, we will need the actual 
coding of this specific calibrated, trained and validated model to make it operational in the 
sense of obtaining 1-week travel time data from the previous week along with the details of the 
actual traffic incident from the Analytics Server shown in Figure 31.  

 
1 Computer implementation refers to the actual coding of the specific calibrated, trained, and validated predictive 
model to make it operational in the sense of obtaining real-time data from the Analytics Server shown in Figure 31 
and passing its predictive output to the desired user interface in the desired format.  
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Table 34. Data preparation efforts required for model calibration and implementation. 
Minimum variables required for calibration 5-minute travel time data, day and time of 

the incident, incident type, direction, incident 
location 

Minimum data amount for model calibration 1-year of travel time data and traffic incident 
data 

Minimum data amount for real-time model 
implementation 

1-week of travel time data from the previous 
week, details of current incident 

 
As mentioned in the data analysis section (Section 3), there is a large amount of noise in the 
raw dataset. Therefore, efforts required for data processing and preparation are listed below: 

 Remove the data with missing values from more than 60% of all the data 
 Match event data with event action data via event ID  
 Match link travel time with traffic incidents by link ID and coordinates 
 Convert “type of affected lanes” to “number of lanes affected” 
 Other data cleaning tasks on an as-needed basis 
 Need high-performance computing resources for model training 

 
As a preliminary estimate, data processing can be as long as 3 to 6 months depending on the 
specifics of the databases that need to be processed and combined. It is important to note that 
as model calibration requires data from different sources to be in the same format, a number of 
scripts that will automate the process have to be developed. However, for future re-calibration 
of the same model,  the time it takes to process the new data will be significantly less than the 
original data processing effort since the developed scripts can be re-used as long as the format 
of the new datasets is not significantly different from the original one. In other words, once the 
initial data processing and preparation task is completed, the development team can re-use the 
same scripts to process new data for re-calibration purposes. However, it is important to note 
that if the data format changes, it will take some time to modify the scripts in order to process 
the new data.  
 
For model training, calibration, validation, and implementation efforts, this model require data 
covering a period of 6-9 months. However, this model is capable of automatic re-calibration, 
which avoids additional manual re-calibration. In other words, as long as new incoming data is 
ready for re-calibration, this model is able to re-calibrate itself and find the optimal training 
accuracy (+/- 5%). Table 35 shows the estimated required time and effort for data processing, 
model calibration, and training2 and computer implementation.  
 

Table 35. Estimated time for data processing and calibration efforts Yu’s model. 
Estimated minimum time for data processing 3 to 6 months 

 
2 It is important to note that all the estimation of required effort in terms of time assumes a high level of familiarity 
with the TRANSCOM data as well as the specific aspects of the model to be calibrated. It will take considerably 
longer time if there is a need for learning specific aspects of each model and data needed to calibrate and 
operationalize them.  
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Estimated time for model training, calibration, 
validation and implementation 

6-9months 

Need to be re-calibrated? Automatic calibration 
Training accuracy need to achieve +/- 5% error 

 

Ghosh’s model (2017) (3) 

In this subsection, we describe the data processing and preparation effort required to calibrate 
and implement Ghosh’s model (3). Similar to Yu’s model (2), the data needs of this model are 
highly compatible with TRANSCOM’s available data. Therefore, we mainly describe the efforts 
of data processing and model training. At the end of this subsection, we provide a rough 
estimate of effort in terms of time required for data preparation and calibration respectively. 
 

Data preparation and calibration 

Table 36 shows the required variables in order to calibrate Ghosh’s model (3), which include 5-
minute travel time data, day and time of the incident, incident type, direction, incident location, 
length of segment, whether or not shoulder is involved, total number of lanes, number of 
affected lanes, and type of affected lanes. 
 
Moreover, Table 36 shows the minimum amount of data required for calibration and 
implementation. Specifically, calibrating this model requires at least 6-month of traffic incident 
data. For the real-time implementation of this model, one-week-long travel time from the past 
week along with the details of the current incident are required. 

Table 36. Data preparation efforts required for model calibration and implementation. 
Variables required for calibration 5-minute link travel time, day and time of the 

incident time, incident type, direction, 
incident location, length of segment, whether 
or not shoulder is involved, total number of 
lanes, number of affected lanes, type of 
affected lanes 

Minimum data amount for calibration 6-month of travel time data and traffic 
incident data 

Minimum data amount for implementation 1-week of recent travel time data, 1 real-time 
incident with details 

 
As mentioned in the data analysis section (Section 3), there is a large amount of noise in the 
raw dataset provided to the research team by TRANSCOM. Therefore, substantial data 
processing effort listed below is required: 

 Remove the data with missing values from more than 60% of all the data 
 Match event data with event action data via event ID  
 Match link travel time with traffic incidents by link ID and coordinates 
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 Match event data with shapefile via link ID 
 Convert “type of affected lanes” to “number of lanes affected” 
 Other data cleaning tasks on an as-needed basis 

 
As a preliminary estimate, data processing can be as long as 3 to 6 months depending on the 
specifics of the databases that need to be processed and combined. However, it is important to 
note that as model calibration requires the same data formats, the time it takes to process the 
data for re-calibration efforts will be decreased. In other words, once the first data processing is 
finished, the research team can adopt the same computation scripts to process any further 
incoming data for re-calibration purposes.  
 
For model calibration, training, validation and implementation efforts, this model will require a 
period of 6-9 months for model training, calibration., and computer implementation Moreover, 
this model needs to be re-calibrated every year in order to keep up-to-date roadway 
conditions. This model is required to have a +/- 5% error between ground truth data and 
trained prediction results. Table 37 shows the estimated time and efforts for data processing, 
model calibration, and training. 

Table 37. Estimated time for data processing and calibration efforts Ghosh’s model. 
Estimated minimum time for data processing 3 to 6 months 

Estimated time for model training,  calibration, 
validation, and implementation 

6-9 months 

Need to be re-calibrated? Yes, every 1 year. 
Training accuracy need to achieve +/- 5% error 

 

7. Timeline of the system development  
Based on the literature review, detailed data analysis and designed system requirements for 
the ideal predictive incident delay estimation tool, we suggest a tentative timeline for the 
model development effort: 
1. Immediate action (if approved): start focusing on the development of a delay prediction 
model based on the models recommended in this study, availability of data, and needs 
identified from surveys. 
2. Longer-term action (2-3 years) When more data becomes available, consider the 
development of a duration prediction model based on the model recommended in this report. 
 
Furthermore, based on the development efforts, we propose a step-wise model development 
approach3: 

 Step1: Develop link-based delay / queue prediction models, validate their 
usefulness under real-world conditions, and integrate them in a software 
environment where operators can start experimenting with them.  (Year 1) 

 
3 It is important to note that this step-wise approach will be revised based on the availability of new data as well as 
the success of each step in terms of the adoption of each model by member agencies.  
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 Step 2: Develop corridor-based delay / queue prediction models and validate 
their usefulness under real-world conditions and integrate them in a software 
environment where operators can start experimenting with them. (Year 2) 

 Step 3: Develop alternative route-based delay / queue prediction models and 
validate their usefulness under real-world conditions and integrate them in a 
software environment where operators can start experimenting with them.   
(Year 3) 

 Step 4: Consider development of duration prediction models and integrate them 
in a software environment where operators can start experimenting with them.   
(Year 3) 
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Appendix 
 

Table 38. Field description of Highway Events data. 
Sr. 
No. Field Name Description Format Missing 

Rate Example 

1 Id Unique identifier of event 

String 0.02% ORI171242207 
2 AssociatedEventID Associated schedule/plan Event 

ID.  String 82.11% ORI171242207 
3 EventClass Suggest a class of an event.  List of 

values are:     
0 – incident      
1 – construction 
2 – special event  Integer 0.02% 0 

4 eventstatus Status of an event  
 
List of values  
0 - New  
1 - Updated  
2 - Closed  
255 - Scheduled  

Integer 0.02% Closed 
5 StartDateTime Start date - time of event  Datetime 0.02% 12/25/17 1:39:00 AM 
6 EndDateTime End date - time of event  

Datetime 0.03% 1/1/18 1:54:21 AM 
7 LastUpdate Last updated date-time of an 

event  Datetime 0.02% 12/25/17 1:39:40 AM 
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8 SummaryDescription Description of an event  

String 0.02% 

MTA Bridges & Tunnels: Truck restrictions on 
I-495 westbound near Greenpoint Avenue 
(New York)  Trucks over 12 feet restricted 
from using the Queens Midtown Tunnel. All 
vehicles over 12 feet must use alternate 
route. 

9 Organization_ShortName Reporting organization Name  
String 0.02% MTA Bridges & Tunnels 

10 eventType Contains event type of current 
event   

String 0.02% Disabled vehicle 
11 LanesTotalCount Total lanes of roadway  Integer 99.29% 4 
12 LanesAffectedCount Lanes affected by this event  

Integer 95.15% 2 
13 LanesDetail Contains lane affected detail. 

Example, all lanes at least one 
lane closed for repairs  String 45.29% right lane 

14 LanesStatus Contains lane status 
Example,     open     close     traffic 
disruption  String 45.59% blocked 

15 Facility Event location facility name String 0.02% I-495 
16 Direction Contains Event direction String 6.38% westbound 
17 City City name based on Event String 12.48% New York 
18 County County name based on Event String 0.64% Queens 
19 State State abbreviation of Event 

Example, 
NJ – New Jersey 
PA – Pennsylvania String 0.02% NY 

20 PrimaryCity Primary city name of Event String 13.12% New York 
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21 SecondaryCity Secondary city name of Event String 76.52% Weehawken Twp 
22 CityArticle Article used with City name 

Example, 
at 
around 
between 

String 38.98% near 
23 PrimaryMarker Primary mile marker  Float 64.19% 1.2 
24 SecondaryMarker Secondary mile marker  Float 78.70% 0.5 
25 MarkerArticle Article used with mile marker  

Example, 
at 
around 
between 

String 100.00% 

at 

26 MarkerUnits Unit of measurement specified in 
mile marker String 64.19% 

mi 

27 PointDatum Any reference point/co-ordinates 
from which measurement may be 
taken. Here the default Point 
Datum is NAD83(North American 
1983 Datum) Float 0.02% NAD83 

28 PointLAT Latitude of an event Float 0.02% 40.73690033 
29 PointLON Longitude of an event Float 0.02% -73.9312973 
30 PrimaryLoc Primary Location of an event 

Example, 
Mile Post:  8.5 
Exit:  US 1 NORTH - MORRISVILLE 
{# 5A} 
(Beginning of I - 295) String 1.41% Greenpoint Avenue 

31 SecondaryLoc Secondary Location of an event String 59.16% New Jersey Side - Center Tube 
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32 LocArticle Article used with Location of an 
event 
Example, 
at 
near String 38.49% near 

33 Comments Comments about an event String 32.45% until further notice 
34 EventTypeDesc Description of event type.  

Example, 
Highway String 0.02% Highway 

35 EventImpactType Impact of an event 
Example, 
Major 
Minor String 89.20% Minor 

36 xcm_ShortDesc Description of an event 

String 0.02% 

MTA Bridges & Tunnels: Truck restrictions on 
I-495 westbound near Greenpoint Avenue 
(New York)  Trucks over 12 feet restricted 
from using the Queens Midtown Tunnel. All 
vehicles over 12 feet must use alternate 
route. 

37 xcm_SortCategory Contains the combination of sort 
order, sort weightage and event 
type id as per defined in DFE 
system 
Example, 
    A040.200.196  
Here, “A0” is prefix, “40” is sort 
order, “200” is sort weightage and 
“196” is an event type id String 0.02% A020.400.255 

38 xcm_SortOrder Sort order of an event type as per 
defined in DFE system 

Integer 0.02% 20 
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39 xcm_PresentationHint Image file which contains the icon, 
used for representing event on 
Operations Map String 0.02% incident.png 

40 OR_TrackingID Open Reach Id of an event String 0.02% ORI-171242207 
41 xcm_Source Source name of an event 

Example, 
TRANSCOM-OpenReach String 0.02% TRANSCOM OpenReach 

42 xcm_Local Flag value with a value of either 0 
or 1. 
0 means that an event is a public 
event 
1 means that an event is a local 
event Integer 0.02% 0 

43 xcm_Transit Flag value with a value of either 0 
or 1. 
0 means that an event is a 
highway event 
1 means that an event is a transit 
event Integer 0.02% 0 

44 xcm_FacilityShortName Facility’s Short name where event 
occurred. 
Example, 
I-295 String 0.63% I-495 

45 xcm_CountyTo Affected County due to event String 27.03% Hudson 
46 OR_ToPointLat Affected “To” Point Latitude Float 64.84% 40.765298 
47 OR_ToPointLon Affected “To” Point Longitude Float 64.84% -74.014992 
48 xcm_EarliestScheduleStart Earliest Schedule Start date-time 

of an event Datetime 100.00% 12/25/17 1:39:00 AM 
49 xcm_LatestScheduleEnd Latest Schedule End date-time of 

an event Datetime 100.00% 1/1/18 1:54:21 AM 
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50 xcm_EventID Combination of creation time and 
reporting org id 
Example: 
2014081522113401104 
Here, 
“20140815221134” is date in 
format of yyyyMMddHHmmss 
“01104” is reporting org id 

String 0.02% 2.01712E+18 
51 xcm_ReportingOrgName Reporting Organization name 

String 0.02% MTA Bridges & Tunnels 
52 xcm_UpdateCount Number of times events got 

updated Integer 0.02% 29 
53 xcm_RaEventType Event Type reference to Event 

Archive System 
Example, 
roadway 
vehicle fire 
accident String 0.02% truck restrictions 

54 xcm_IncExpEndDttm Event’s expected end date-time Datetime 0.10% 12/25/17 1:39:00 AM 
55 xcm_CountyFrom Affected “From” county name  String 0.58% Queens 
56 xcm_WeatherCondition Weather condition during event String 99.98% sunny 
57 xcm_PavementCondition Pavement condition during event 

String 100.00% 
N/A 

58 xcm_OtherInformationTwo Additional Other Information 
about event String 100.00% 

N/A 

59 xcm_LaneDetails Contains lane affected detail String 89.74% service road 
60 xcm_Impact Impact of event. 

Example, 
MAJOR 
MINOR String 89.22% Minor 
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61 xcm_RespondingOrgName Organization who responded to 
event String 100.00% MTA Bridges & Tunnels 

62 xcm_IncidentOccured Date-time when event occurred Datetime 100.00% 12/25/17 1:39:00 AM 
63 xcm_IncidentReported Date-time when event was 

reported Datetime 100.00% 12/25/17 1:39:00 AM 
64 xcm_IncidentVerified Date-time when event was 

verified Datetime 100.00% 12/25/17 1:39:00 AM 
65 xcm_ResponseIdentifiedAndDispatched Date-time when response was 

identified and dispatched to event 
location Datetime 100.00% 12/25/17 1:39:00 AM 

66 xcm_AllLanesOpenToTraffic Date-time when all lanes were 
open to traffic Datetime 100.00% 12/25/17 1:39:00 AM 

67 eventDuration Duration of the event  Datetime 0.02% 7 - 00:15 
 

Table 39. Action type with type id.  
Id TypeName 

0 Verification 
1 Notification 
2 VMS 
3 HAR 
4 Diversion Route 
5 IMRT 
6 Crew 
7 State Police 
8 Other 
9 Fatality 

10 Construction 
11 HAZMAT 
12 Bridge Plates 
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13 Buses Ordered 
14 On-board Announcement 
15 Station Announcement 
16 Station Displays 
17 Alternates 
30 Event Created 
31 Event Updated 
32 Event Closed 
33 Event Reopened 
34 Event Copied To 
35 Event Copied From 
36 Event Spawned 
37 Event Terminated 
38 Event Archived 
39 Event Modified 
40 Event Prepopulated 
50 Initial Event Snapshot 
51 Event Update Snapshot 
52 Event Closed Snapshot 
53 Event Created Snapshot 



Internal use only, do not distribute (Final report) 

 

125 
 

References 
1. Demiroluk, S., and K. Ozbay. Adaptive learning in bayesian networks for incident duration 

prediction. Transportation Research Record, Vol. 2460, No. 1, 2014, pp. 77-85. 
2. Yu, R., Y. Li, C. Shahabi, et al. Deep learning: A generic approach for extreme condition traffic 

forecasting.In Proceedings of the 2017 SIAM International Conference on Data Mining, SIAM, 
2017. pp. 777-785. 

3. Ghosh, B., J. Dauwels, and U. Fastenrath. Analysis and prediction of the queue length for non-
recurring road incidents.In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 
IEEE, 2017. pp. 1-8. 

4. Haule, H. J., T. Sando, R. Lentz, et al. Evaluating the impact and clearance duration of freeway 
incidents. International Journal of Transportation Science and Technology, Vol. 8, No. 1, 2019, 
pp. 13-24. 

5. Khattak, A. J., J. L. Schofer, and M.-H. Wang. A simple time sequential procedure for predicting 
freeway incident duration. Journal of Intelligent Transportation Systems, Vol. 2, No. 2, 1995, pp. 
113-138. 

6. Garib, A., A. Radwan, and H. Al-Deek. Estimating magnitude and duration of incident delays. 
Journal of Transportation Engineering, Vol. 123, No. 6, 1997, pp. 459-466. 

7. Peeta, S., J. L. Ramos, and S. Gedela. Providing real-time traffic advisory and route guidance to 
manage Borman incidents on-line using the hoosier helper program. 2000. 

8. Khattak, A. J., J. Liu, B. Wali, et al. Modeling traffic incident duration using quantile regression. 
Transportation Research Record, Vol. 2554, No. 1, 2016, pp. 139-148. 

9. Yu, B., and Z. Xia. A methodology for freeway incident duration prediction using computerized 
historical database.In Twelfth COTA International Conference of Transportation 
ProfessionalsAmerican Society of Civil EngineersTransportation Research Board, 2012. 

10. Weng, J., W. Qiao, X. Qu, et al. Cluster-based lognormal distribution model for accident 
duration. Transportmetrica A: Transport Science, Vol. 11, No. 4, 2015, pp. 345-363. 

11. Ozbay, K., and P. Kachroo. Incident management in intelligent transportation systems. 1999. 
12. Smith, K., and B. L. Smith. Forecasting the clearance time of freeway accidents. 2002. 
13. Breiman, L. Classification and regression trees. Routledge, 2017. 
14. Knibbe, W. J. J., T. P. Alkim, J. F. Otten, et al. Automated estimation of incident duration on 

Dutch highways.In 2006 IEEE Intelligent Transportation Systems Conference, IEEE, 2006. pp. 870-
874. 

15. He, Q., Y. Kamarianakis, K. Jintanakul, et al. Incident duration prediction with hybrid tree-based 
quantile regression.In Advances in dynamic network modeling in complex transportation 
systems, Springer, 2013. pp. 287-305. 

16. Zhan, C., A. Gan, and M. Hadi. Prediction of lane clearance time of freeway incidents using the 
M5P tree algorithm. IEEE Transactions on Intelligent Transportation Systems, Vol. 12, No. 4, 
2011, pp. 1549-1557. 

17. Wei, C.-H., and Y. Lee. Sequential forecast of incident duration using Artificial Neural Network 
models. Accident Analysis & Prevention, Vol. 39, No. 5, 2007, pp. 944-954. 

18. Park, H., A. Haghani, and X. Zhang. Interpretation of Bayesian neural networks for predicting the 
duration of detected incidents. Journal of Intelligent Transportation Systems, Vol. 20, No. 4, 
2016, pp. 385-400. 

19. Ozbay, K., and N. Noyan. Estimation of incident clearance times using Bayesian Networks 
approach. Accident Analysis & Prevention, Vol. 38, No. 3, 2006, pp. 542-555. 



Internal use only, do not distribute (Final report) 

 

126 
 

20. Boyles, S., D. Fajardo, and S. T. Waller. A naive Bayesian classifier for incident duration 
prediction.In 86th Annual Meeting of the Transportation Research Board, Washington, DC, 
Citeseer, 2007. 

21. Yang, B.-b., X. Zhang, and L. Sun. Traffic incident duration prediction based on the Bayesian 
decision tree method.In The First International Symposium on Transportation and Development–
Innovative Best Practices (TDIBP 2008) American Society of Civil EngineersChina Academy of 
Transportation Sciences, 2008. 

22. Shen, L., and M. Huang. Data mining method for incident duration prediction.In International 
Conference on Applied Informatics and Communication, Springer, 2011. pp. 484-492. 

23. Qi, Y., and H. Teng. An information-based time sequential approach to online incident duration 
prediction. Journal of Intelligent Transportation Systems, Vol. 12, No. 1, 2008, pp. 1-12. 

24. Yu, B., Y. Wang, J. Yao, et al. A comparison of the performance of ANN and SVM for the 
prediction of traffic accident duration. Neural Network World, Vol. 26, No. 3, 2016, p. 271. 

25. Zeng, X., and P. Songchitruksa. Empirical method for estimating traffic incident recovery time. 
Transportation Research Record, Vol. 2178, No. 1, 2010, pp. 119-127. 

26. List, G. F. Quantifying non-recurring delay on New York City's arterial highways. 2008. 
27. Khattak, A., X. Wang, and H. Zhang. Incident management integration tool: dynamically 

predicting incident durations, secondary incident occurrence and incident delays. IET Intelligent 
Transport Systems, Vol. 6, No. 2, 2012, pp. 204-214. 

28. Li, J., C.-J. Lan, and X. Gu. Estimation of incident delay and its uncertainty on freeway networks. 
Transportation Research Record, Vol. 1959, No. 1, 2006, pp. 37-45. 

29. Cassidy, M. J., and L. D. Han. Proposed model for predicting motorist delays at two-lane highway 
work zones. Journal of Transportation Engineering, Vol. 119, No. 1, 1993, pp. 27-42. 

30. Yi, J. Traffic characteristics and estimation of traffic delays and user costs at Indiana freeway 
work zones.In, Indiana. Dept. of Transportation, 1999. 

31. Chien, S., and P. Schonfeld. Optimal work zone lengths for four-lane highways. Journal of 
Transportation Engineering, Vol. 127, No. 2, 2001, pp. 124-131. 

32. Jiang, X., and H. Adeli. Freeway work zone traffic delay and cost optimization model. Journal of 
Transportation Engineering, Vol. 129, No. 3, 2003, pp. 230-241. 

33. Chitturi, M. V., R. F. Benekohal, and A.-Z. Kaja-Mohideen. Methodology for computing delay and 
user costs in work zones. Transportation Research Record, Vol. 2055, No. 1, 2008, pp. 31-38. 

34. Ramezani, H., R. F. Benekohal, and K. A. Avrenli. Methodology to analyze queue length and delay 
in work zones.In, 2011. 

35. Ullman, G. L., and C. L. Dudek. Theoretical approach to predicting traffic queues at short-term 
work zones on high-volume roadways in urban areas. Transportation Research Record, Vol. 
1824, No. 1, 2003, pp. 29-36. 

36. Curtis, D. QuickZone [software that estimates traveller delay due to road work zones]. Public 
Roads, Vol. 65, No. 1, 2001. 

37. Bartin, B., K. Ozbay, and S. Mudigonda. Interactive lane closure and traffic information tool 
based on a geographic information system. Transportation Research Record, Vol. 2272, No. 1, 
2012, pp. 44-55. 

38. Bartin, B., K. Ozbay, M. D. Maggio, et al. Work zone coordination software tool. Transportation 
Research Record, Vol. 2617, No. 1, 2017, pp. 60-70. 

39. Chang, G.-L., and N. Zou. An Integrated Work-Zone Computer System for Capacity Estimation, 
Cost/Benefit Analysis, and Design of Control.In, 2009. 

40. Ozbay, K., and B. Bartin. Development of uniform standards for allowable lane closure: final 
report, September 2008.In, New Jersey. Dept. of Transportation, 2008. 



Internal use only, do not distribute (Final report) 

 

127 
 

41. Bian, Z., and K. Ozbay. Estimating uncertainty of work zone capacity using neural network 
models. Transportation Research Record, Vol. 2673, No. 2, 2019, pp. 49-59. 

42. Hojati, A. T., L. Ferreira, S. Washington, et al. Reprint of: modelling the impact of traffic incidents 
on travel time reliability. Transportation Research Part C: Emerging Technologies, Vol. 70, 2016, 
pp. 86-97. 

43. Javid, R. J., and R. J. Javid. A framework for travel time variability analysis using urban traffic 
incident data. IATSS research, Vol. 42, No. 1, 2018, pp. 30-38. 

44. Caceres, H., H. Hwang, and Q. He. Estimating freeway route travel time distributions with 
consideration to time‐of‐day, inclement weather, and traffic incidents. Journal of Advanced 
Transportation, Vol. 50, No. 6, 2016, pp. 967-987. 

45. Di Martino, S., S. Kwoczek, and S. Rossi. Predicting the Spatial Impact of Planned Special 
Events.In International Symposium on Web and Wireless Geographical Information Systems, 
Springer, 2019. pp. 102-117. 

46. Yue, M., L. Fan, and C. Shahabi. Traffic Accident Detection with Spatiotemporal Impact 
Measurement.In Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 
2018. pp. 471-482. 

47. Pan, B., U. Demiryurek, and C. Shahabi. Utilizing real-world transportation data for accurate 
traffic prediction.In 2012 IEEE 12th International Conference on Data Mining, IEEE, 2012. pp. 
595-604. 

48. Chen, H., and H. A. Rakha. Real-time travel time prediction using particle filtering with a non-
explicit state-transition model. Transportation Research Part C: Emerging Technologies, Vol. 43, 
2014, pp. 112-126. 

 


	EXECUTIVE SUMMARY
	Overview
	1.Traffic impact duration prediction
	1.1 Regression model-based impact duration prediction models
	1.1.1 A simple time-sequential procedure for predicting freeway impact duration. Khattak et al. (1995)
	Data needs

	1.1.2 Estimating magnitude and duration of incident delays. Garib et al. (1997)
	Data needs

	1.1.3 Providing real-time traffic advisory and route guidance to manage Borman incidents online using the Hoosier helper program. Peeta et al. (2000)
	Data needs

	1.1.4 Modeling traffic impact duration using quantile regression. Khattak et al. (2016)
	Data needs

	1.1.5 A methodology for freeway impact duration prediction using computerized historical database. Yu and Xia. (2012)
	Data needs

	1.1.6 Cluster-based lognormal distribution model for accident duration. Weng et al. (2015)
	Data needs

	1.1.7 Summary of Regression-Based Duration Models

	1.2 Classification Tree Method (CTM) based impact duration prediction methods
	1.2.1 Incident Management in Intelligent Transportation Systems. Ozbay and Kachroo. (1999)
	Data needs

	1.2.2 Forecasting the clearance time of freeway accidents. Smith et al. (2002)
	Data needs

	1.2.3 Automated estimation of impact duration on Dutch highways. Knibbe et al. (2006)
	Data needs

	1.2.4 Impact duration prediction with hybrid tree-based quantile regression. He et al. (2013)
	Data needs

	1.2.5 Prediction of lane clearance time of freeway incidents using the M5P tree algorithm. Zhan et al. (2011)
	Data needs

	1.2.6 Summary of Classification Tree Method (CTM) models

	1.3 Artificial neural network-based impact duration methods
	1.3.1 Sequential forecast of impact duration using Artificial Neural Network. Wei and Lee. (2007)
	Data needs

	1.3.2 Interpretation of Bayesian neural networks for predicting the duration of detected incidents. Park et al. (2016)
	Data needs

	1.3.3 Summary of Artificial Neural Network models

	1.4 Bayesian Network-based impact duration prediction methods
	1.4.1 Estimation of incident clearance times using Bayesian Networks approach. Ozbay and Noyan. (2006)
	Data needs

	1.4.2 A naïve Bayesian classifier for impact duration prediction. Boyles et al. (2007)
	Data needs

	1.4.3 Traffic impact duration prediction based on the Bayesian decision tree method. Ji et al. (2008)
	Data needs

	1.4.4 Data mining method for impact duration prediction. Shen and Huang. (2011)
	Data needs

	1.4.5 Adaptive learning in Bayesian networks for impact duration prediction. Demiroluk and Ozbay. (2014)
	Data needs

	1.4.5 Summary of Bayesian Network models

	1.5 Hazard-based impact duration prediction models
	1.5.1 An information-based time-sequential approach to online impact duration prediction. Qi and Teng. (2008)
	Data needs


	1.6 Support Vector Machine (SVM) based impact duration prediction models
	1.6.1 A comparison of the performance of ANN and SVM for the prediction of traffic accident duration. Yu et al. (2016)
	Data needs

	1.6.2 Summary of hazard-based and SVM-based impact duration prediction models

	1.7 Estimation of incident recovery time
	1.7.1 Empirical methods for estimating traffic incident recovery time. Zeng and Songchitruksa. (2010)
	Data needs


	1.8 Data needs from reviewed models and their compatibility with TRANSCOM data

	2. Traffic delay estimation/prediction
	2.1 Analytical models for the estimation/prediction of traffic delay
	2.1.1 Incident management integration tool: dynamically predicting impact durations, secondary incident occurrence, and incident delays. Khattak et al. (2012)
	Data needs

	2.1.2 Estimation of incident delay and its uncertainty on freeway networks. Li et al. (2006)
	Data needs

	2.1.3 Proposed model for predicting motorist delays at two-lane highway work zones. Cassidy and Han. (1993)
	Data needs

	2.1.4 Traffic characteristics and estimation of traffic delays and user costs at Indiana freeway work zones. Jiang. (1999)
	Data needs

	2.1.5 Optimal work zone lengths for four-lane highways. Chien and Schonfel. (2001)
	Data needs

	2.1.6 Freeway work zone traffic delay and cost optimization model. Jiang and Adeli. (2003)
	Data needs

	2.1.7 Methodology for computing delay and user costs in work zones. Chitturi et al. (2008)
	Data needs

	2.1.8 Methodology to analyze queue length and delay in work zones. Ramezani and Benehokal. (2011)
	Data needs

	2.1.9 Theoretical approach to predicting traffic queues at short-term work zones on high-volume roadways in urban areas. Ullman and Dudek. (2003)
	Data needs

	2.1.10 Summary of analytical models for traffic delay estimation/prediction
	2.1.11 Traffic incident management decision support tools for planning purposes
	QuickZone.
	RILCA.
	Work Zone Coordination tool


	2.2 Data-driven methods for estimating/predicting impacts of non-recurrent traffic events
	2.2.1 Estimating magnitude and duration of incident delays. Garib et al. (1997)
	Data needs

	2.2.2 Modelling the impact of traffic incidents on travel time reliability. Hojati et al. (2016)
	Data needs

	2.2.3 A framework for travel time variability analysis using urban traffic incident data. Javid et al. (2018)
	Data needs

	2.2.4 Estimating freeway route travel time distributions with consideration to time-of-day, inclement weather, and traffic incidents. Caceres et al. (2016)
	Data needs

	2.2.5 Predicting the spatial impact of planned special events. Martino et al. (2019)
	Data needs

	2.2.6 Traffic accident detection with spatiotemporal impact measurement. Yue et al. (2018)
	Data needs

	2.2.7 Utilizing real-world transportation data for accurate traffic prediction. Pan et al. (2012)
	Data needs

	2.2.8 Analysis and prediction of the queue length for non-recurring road incidents. Ghosh et al. (2017)
	Data needs

	2.2.9 Real-time travel time prediction using particle filtering with a non-explicit state-transition model. Chen and Rakha (2014)
	Data needs

	2.2.10 Deep learning: a generic approach for extreme condition traffic forecasting. Rose Yu, et al. (2017)
	Data needs

	2.2.11 Summary of data-driven models for traffic delay estimation

	2.3 Data needs from reviewed models and their compatibility with TRANSCOM data

	3. Data analysis towards estimating selected operations models
	3.1 Highway events
	Highway Events-Incidents, Construction, Special Events
	Facility-Event Type Mapping
	Incident Type-Event Category Mapping
	Event-Link ID Mapping
	Event Actions

	3.2 Highway trips
	Link travel time
	Link shapefile

	3.3 HPMS volume data

	4. Comparison of reviewed models and recommendations
	4.1 Ideal model vs. existing models
	4.2 Model comparison
	4.2.1 Operations versus planning
	4.2.2 Prediction of a single value versus a range of values
	4.2.3 Analytical versus data-driven
	4.2.4 Compatibility with TRANSCOM data
	4.2.5 Summary of model comparison
	Impact duration prediction
	Traffic delay estimation


	4.3 Final model recommendation
	4.4 Comparison of TRANSCOM data and data needs of recommended models
	Demiroluk and Ozbay’s model (2014) (1)
	Yu’s model (2017) (2)
	Ghosh’s model (2017) (3)


	5. System requirements for an ideal predictive tool
	5.1. Maintain a database of non-recurrent events
	5.2. Traffic impact duration prediction
	5.3 Traffic delay estimation/prediction

	6. A preliminary assessment of development, calibration and implementation efforts required for recommended models
	Demiroluk and Ozbay’s model (2014) (1)
	Data preparation and calibration

	Yu’s model (2017) (2)
	Data preparation and calibration

	Ghosh’s model (2017) (3)
	Data preparation and calibration


	7. Timeline of the system development
	Appendix
	References

