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EXECUTIVE SUMMARY

The overall goal of this project is to review the existing predictive models and available
TRANSCOM data in order to identify operations models that can best predict traffic impacts
when a non-recurrent incident or event occurs. The selection process of these models is
primarily driven by the needs of the TRANSCOM stakeholders as well as the available
TRANSCOM data.

This project was comprised of four main tasks: The first task was a detailed literature review
which relates to the development of data-driven predictive delay models for non-recurrent
traffic congestion. The second task was to interview TRANSCOM stakeholders and to identify
their needs for the development of a non-recurrent impact (delay) model. The third task was a
detailed review of TRANSCOM data to help identify the most appropriate modeling approach,
given the availability of TRANSCOM's historical as well as real-time data. The last task was to
provide recommendations based on the findings of the previous tasks. The advantages and
disadvantages of the recommended approaches are described using examples of their potential
operations use cases. Moreover, this document provides the system requirements for an ideal
predictive tool for non-recurrent traffic incidents (Section 5). This document also provides the
assessment for development and implementation of recommended models (Section 6).

In this report, a detailed review of large number of past studies found in the literature is
presented. The search identified any predictive operations models that can work with
TRANSCOM data. Given this requirement, there was a limit on the possibilities of using off-the-
shelf existing models. For example, many existing models require real-time traffic volume as
one of the critical inputs; the lack of traffic volume in the TRANSCOM data limits the use of
many of the existing models.

As a result of this review, the team could not identify any predictive delay model that would be
compatible with the TRANSCOM data and that is currently being used by operational staff on a
real-time basis. Given the feedback received from interviews with TRANSCOM stakeholders and
available TRANSCOM data, this report recommends one model for each type of prediction task
namely, impact duration prediction, traffic delay prediction/estimation, and queue length
prediction.

For models predicting traffic impact duration, we recommend Demiroluk and Ozbay’s (1)
Bayesian network model. Their model can work with available TRANSCOM data and provide
reasonable predicted results. Specifically, Demiroluk and Ozbay’s (1) model is able to predict
incident duration when there is very limited information available to traffic operators. Their
model can also work with missing data and provide a predicted distribution of incident
durations.

For incident delay prediction/estimation, we recommend a travel time prediction model
developed by Yu (2) since it has the highest accuracy among all reviewed models. For the queue



length prediction, we recommend Ghosh’s model (3) for predicting real-time queue length with
reasonable accuracy using TRANSCOM's travel time data only.

Additional details of the recommended models have been provided in Section 4 of this report.

Based on the details of the recommended models, we propose and design a predictive tool for
non-recurrent traffic incidents. Section 5 explains the properties of an ideal prediction tool and
provides details about the designed functionalities and system requirements.

Lastly, this document includes a preliminary assessment for development and implementation
of the recommended models. For each model, time requirements and development efforts for
the calibration, validation and implementation are identified in Section 6. Finally, the last
section provides a tentative timeline of the system development in steps.



Introduction and Study Objectives

The main goal of this document is to provide a detailed review of the previous models that
were developed to predict non-recurrent traffic delay according to the task descriptions given
in the scope of work. The scope of work is defined as listed below.

Task 1: Literature Review (Completed)
=  Apply a comprehensive process that will focus on the review of the most recent
predictive approaches that take advantage of big data from various sources.
Task 2: Interviews with TRANSCOM Stakeholders (Completed)
= Conduct a minimum of four face-to-face interviews that can be supplemented by
several one-on-one phone interviews.
=  MTA B&T, PANYNJ, NYSTA, NYSDOT, NYCDOT, MTA NYCT, NJ Transit, NJDOT and
NJ Turnpike.
Task 3: Detailed Review of TRANSCOM Data (Completed)
= Determine geographical scope (ICM 495 corridor)
=  TRANSCOM'’s historical traffic and event data will be obtained with the goal of
identifying the most appropriate modeling approach(es).
Task 4: Final Recommendations and Final Report (Completed)
= Provide a final recommendation in the form of a final report that clearly
documents findings of above tasks
Task 5: Project Management
= Meetings, quarterly and final reports, and other project management tasks

As mentioned above, in addition to the literature review, a detailed review of the TRANSCOM
data for the ICM 495 corridor shown in Figure 1 below was conducted with the ultimate
objective of determining the minimum data and ideal dataset requirements and providing
recommendations.
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Figure 1. ICM-495 Corridor and Alternate Roadways from NJ Turnpike to JFK.
(Source: https://www.nymtc.org/portals/0/pdf/presentations/MMN-ITS _ICM_Presentation_MM.pdf)

It is essential to emphasize further that our final recommendations will be made with a clear
understanding that developed models will be used by operators at a Traffic Management
Center to manage an incident in the best way possible. This has a few critical implications
including the need for the models to:

1) work with existing real-time data;

2) be computationally efficient in order to produce almost instantaneous predictions;

3) generate easy to understand and disseminatable predictions;

4) adaptive to real-world changes as the incident removal operations progress. In the rest of

this document, we provide a detailed review of relevant impact duration-delay estimation
models.
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Overview

A non-recurrent traffic incident comprises of four distinct intervals: detection, response,
clearance, and recovery. This definition (4) is consistent with the incident timeline, which starts
when an incident occurs, identifies key interim activities, notes when clearance of the roadway
occurs and ends with traffic returning to normal conditions. Figure 2 shows the timeline of the
elements of a typical traffic incident management operation.

1. Detection 2. Response 3. Clearance 4. Recovery

*Time *Time *Time *Time
between between between between
start and notification response clearance
detection and team arrival and traffic

response and last recovery
team arrival evidence is into normal
removed condition

3. Decision
making process

2. More data
coming in

1. Mandatory 4. Finish

data needed

*Intermediate *Updated *Whether to
duration duration alternate
prediction prediction routes or

*Estimated sUpdated patterns
travel travel

*Operation
process ends

delay/queue delay/queue
length length

Figure 2. Timeline of the elements of a traffic incident.

At the operations level, when an incident occurs, operators first need to know how long this
incident will last. This is the point where traffic impact duration prediction models are needed
to provide an estimated impact duration. The availability of duration information will allow
operators to assess the potential impacts of the incident. Next, operators need to quantify the
traffic impact of the incident in order to make operations decisions. This is the point where
traffic delay estimation models can help to provide traffic impact information, including traffic
delay, the increase of travel time, and queue length. Figure 3 shows a general operations
flowchart of a non-recurrent traffic incident.
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Meed to know the Need to know the
estimated duration estimated impact of Operational actions
of incident traffic incident

MNon-recurrent
incident reported

Incident duration Traffic delay
prediction model estimation model

Figure 3 General operations process for a non-recurrent traffic incident event.

In the literature review, impact duration prediction and traffic delay estimation models are
considered separately. This document has seven main sections. The first section is the literature
review of traffic impact duration prediction models. This section categorizes models under five
types of modeling approaches (regression, classification tree, Bayesian network, artificial neural
network, hazard-based model). The second section is the literature review of traffic delay
estimation/prediction models. This section divides delay estimation/prediction models into two
categories, analytical and data-driven models. For each model under both categories, we
provide a brief description of the modeling methodology, data needs, and detailed information
about model evaluation in terms of their performance and advantages/disadvantages of using
them. At the end of each subsection, a brief summary of models will also be provided. The
summary includes an individual model performance comparison, compatibility of model data
requirements compared with the data in the TRANSCOM database as well as highlights of each
model.

The third section is a detailed data analysis towards the selected estimation models. This
section analyzed and described the available TRANSCOM data by providing data fields, data
quality check and potential usage for selected estimation models.

The forth section of this document provides a final recommendation of candidate models and
the comparison between TRANSCOM data and data needs of these recommended models. In
the fifth section, this document proposes an “ideal data-driven predictive non-recurrent
duration / delay estimation framework” based on the outcomes of literature review study. The
sixth section provides a preliminary assessment of development and implementation of
recommended models. In the last section, this document proposes a timeline for the
development of designed systems.
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1.Traffic impact duration prediction

Impact duration prediction is one of the most critical steps of the overall incident management
process. An accurate and reliable prediction of the impact duration can be the main difference
between an effective incident management operation versus an unacceptable one. When a
traffic incident occurs, a fast and accurate prediction will affect the effectiveness of the overall
decision-making process of incident management operators. Thus, computationally efficient
models that can work in real-time is a vital requirement.
To predict impact duration, there is a wide range of approaches that are proposed in the
literature. This document divides these approaches into five main categories:

1. Regression-based models

2. Classification Tree Method (CTM) based models

3. Artificial neural networks

4. Machine-learning (Bayesian networks, SVM) based models

5. Hazard-based duration models

Table 1 below is a summary of duration prediction models reviewed in this task. It also provides
each model’s data compatibility with respect to TRANSCOM data. During the literature search
task, data needs of reviewed models and their compatibility with data received from
TRANSCOM were considered. We use three levels to represent models’ data compatibility with
TRANSCOM data:

1. Low compatibility: TRANSCOM data covers less than 40% of the data needs of a model,

or TRANSCOM data does not have some fundamental inputs required by a model for its
real-time operations use. For instance, many analytical models that attempt to estimate
delay require real-time traffic volume.

2. Medium compatibility: TRANSCOM data does not currently cover some of the data
requirements for real-time use of a model but it is expected that some of the missing
data will be obtained at a later stage. For example, incident operation data such as the
number of police vehicles involved cannot be reported to the operators instantaneously
but can be updated/provided as the incident moves on.

3. High compatibility: TRANSCOM data covers most of the data needs of a model.

Table 1 Summary of traffic impact duration prediction models

Model TRANSCOM Highlights —
data
compatibility
Regression Khattak et al., Low Statistical regression, sequential/real-time model,
models 1995 (1.1.1) operations, unreliable
Garib et al., Medium Statistical regression, one-time model, not
1997 (1.1.2) operations, unreliable
Peeta et al., Low Statistical regression, one-time model, not
2000 (1.1.3) operations, unreliable
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Khattak et al., High Statistical regression, sequential/real-time,
2016 (1.1.4) operations, too simplistic and too many
categorical variables
Yu and Xia et Low Statistical regression, one-time model, not
al., 2012 operations, unreliable
(1.1.5)
Weng et al., Low Statistical regression, one-time model,
2015 (1.1.6) probabilistic, not operations, reliable
Classification Ozbay and Low S . .
Classification tree, sequential model, real-time
Tree Kachroo, 1999 .
Methods (1.2.1) prediction
Smith et al., Low Classification tree, sequential model, bad
2002 (1.2.2) performance, not operations, real-time, unreliable
Knibbe et al., Low Classification tree, sequential model, simple, not
2006 (1.2.3) operations, real-time, unreliable
He et al., 2013 Medium Classification tree, sequential model can extend to
(1.2.4) real-time model, operations, interpretable,
reliable
Zhanetal., Low Classification tree, can extend to real-time model,
2011 (1.2.5) deal with missing values, operations, unreliable
Artificial Wei and Lee, High Artificial neural network, provide immediate and
neural 2007 (1.3.1) updated duration, operations, one-time and real-
network time capable, reliable
Park et al., Medium Artificial neural network, probabilistic,
2016 (1.3.2) interpretable, one-time model, reliable
Bayesian Ozbay and Medium Bayesian network, interpretable, capture
networks Noyan, 2006 stochasticity, sequential model, operations,
(1.4.2) reliable
Boyles et al., High Bayesian network, interpretable, capture
2007 (1.4.2) stochasticity, sequential model, operations,
unreliable
Jietal.,, 2008 Low Bayesian network, deal with missing data,
(1.4.3) sequential model, not operations, reliable
Shen and Low Bayesian network, interpretable, capture
Huang, 2011 stochasticity, sequential model, not operations,
(1.4.4) reliable
Demiroluk and Medium Bayesian network, interpretable, adaptive
Ozbay, 2014 learning, sequential model, real-time prediction,
(1.4.5) operations
Hazard-based Qi and Teng, High Hazard-based model, three-stage model, provide
model 2008 (1.5.1) immediate and updated duration, operations,

reliable
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SVM Yu et al., Low Support vector machine, interpretability, one-time
2016(1.6.1) model, not operations, reliable

1.1 Regression model-based impact duration prediction models

Traffic researchers applied several well-known statistical methods to predict the traffic impact
duration. Regression is one of the most popular statistical approaches used for this goal. There
are a few studies that applied regression models for the duration prediction problem in the
literature.

1.1.1 A simple time-sequential procedure for predicting freeway impact duration. Khattak et al.

(1995)

In one of the earliest academic studies, Khattak et al., 1995 (5) developed a truncated
regression model and applied it using a time-sequential methodology. They predicted impact
duration as the TMC receives the incident information based on a dataset of 109 large-scale
incidents. In this study, it is assumed that the relationship between impact durations, y, and
independent variables x4, x5, ..., xi is of the form:

Vi = P1Xis + BaXip + -+ Prxie + € = B'x; + €
Where i refers to the i the observation; the set of n observations can be denoted as:

Y=Xf+e€

Where:

Y = Vector of n dependent variable observations on impact duration
X = Matrix of k independent variables and n observations

[ = Vector of k parameters

€ = The error term with expected value zero and variance g

This study then applied several truncation points 7 € (10,15,20,25,30 min) to compare model
performance under different truncation points.
vi=B'x;+¢€ > 1yareincluded in the data observed, and
yi=B'xi+¢ < T, are exclued
In this way, the truncated regression model can receive input data in time-sequential order.

Data needs

Traffic data: Traffic flow conditions for the time of day and day of the week

Incident data: Incident type, vehicle type, number of vehicles involved, injuries and fatalities,
state property damage.

Operations data: Response times, number of rescue vehicles, whether a heavy wrecker was
needed if sanding/salting was done because of a spill/ice on the pavement, whether other
agencies such as medical services and owners of the vehicles involved provided assistance,
whether incident information is disseminated to motorists or not.

Time data: Time when incident is detected, time when incident is cleared, month of the year.
Location data: Freeway where the incident occurred, distance from the city center.

Weather data: Rainy or dry
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Highlights

Advantages Disadvantages Model performance
e Can deal with time- e Developed using a e Not tested under real-
sequential data and minimal data set, and it world conditions due to
provide real-time is questionable that it the lack of actual field
impact duration will work under various data.
prediction. real-world conditions.

e Considers ten distinct
stages of impact
duration based on the
available information.

1.1.2 Estimating magnitude and duration of incident delays. Garib et al. (1997)

Garib et al., 1997 (6) introduced a statistical model for predicting impact duration using a linear
regression model. They estimated the model using 205 incidents and claimed that their model
reported adjusted R-square value as 81%. The input variables include the number of lanes
affected, number of vehicles involved, truck involvement, time of day, police response time,
and weather condition. The estimated model is shown below:

Log(Duration) = 0.87 + 0.27X, X, + 0.2Xs — 0.17X, + 0.68X, — 0.24Xg
Where:
Duration = impact duration in minutes
X1 = number of lanes affected by the incident
X, = number of vehicles involved in the incident
X5 = dummy variable representing truck involvement in the incident
X¢ = dummy variable representing the time of day
X, = natural logarithm of the police response time in minutes
Xg = dummy variable representing weather condition.

Data needs

Traffic data: None.

Incident data: Incident type, number of lanes affected, vehicle type, vehicle color.

Time data: Time when incident is detected, time when incident is cleared.

Location data: Direction of an incident, lanes affected, upstream/downstream to the nearest
exit.

Operations data: Time of police arrival, number of tow trucks.

Weather data: Rainy or dry.

Model Highlights
Advantages Disadvantages Model performance

17



Simple and easy to use
for operation purpose.

Cannot deal with time-
sequential data.

e Best adjusted R%: 81%

e Cannot provide real-
time impact duration
prediction.

e Developed using a
minimal data set (205
incidents), and it is
guestionable that it will
work under various
real-world conditions.

1.1.3 Providing real-time traffic advisory and route quidance to manage Borman incidents
online using the Hoosier helper program. Peeta et al. (2000)

Peeta (7) estimated a linear regression model to estimate the clearance time of one incident
using 835 crashes and 1176 debris (debris on the roadway). A simple linear regression model
with four categories of explanatory variables was estimated: incident severity (including
number of vehicles, trucks), incident lateral location variables (including locations on-ramp,
median, left lane), environmental condition variables (such as night, temperature, vision) and
current traffic condition variables (such as rush hour). Their linear regression model was
estimated for both crashes and highway debris. The statistical performance was reported as
R? = 0.234 for crashes and R? = 0.362 for debris. The model for predicting the duration of
crashes is shown below:
Duration(Crashes)
= 12.774 * ONE 4+ 7.349 x NVEH 4+ 2.930 * TRUCK + 18.055 * RAMP
+ 4.496 * MEDIAN + 9.095 * LL + 15.846 = CL + 9.780 * RL + 16.596
* NIGHT — 0.065 * TEMP — 0.136 « VIS + 32.842 * RAINH + 13.571
* RAINL + 6.527 *x SNOW — 1.150 * RUSH
Where:
Duration (Crashes) = Predicted impact duration that is caused by crashes
NVEH = number of vehicles involved in the incident
MEDIAN = if the incident occurred on the median
LL = if the incident occurred on the left lane
CL = if the incident occurred on the center lane
RL = if the incident occurred on the right lane
RAMP = if the incident occurred on the freeway ramp
RAINH =high intensity rain
RAINL = low-intensity rain
SNOW = if snowing during the incident clearance process
NIGHT = if the incident clearance process occurs at night
TRUCK = if a truck is involved in the accident
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Data needs

Traffic data: Traffic volume, average traffic speed

Incident data: Incident type, vehicle type, number of vehicles involved, percentage of trucks at
the time of incident.

Operations data: number of emergency crew at the time of incident, type of equipment used,
number of equipment used, whether incident information is disseminated to motorists or not.
Time data: Time when incident is detected, time when incident is cleared.

Location data: None.

Weather data: Rain or snow

Light conditions: Night or daytime.

Model Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Cannot deal with time- e BestR%:0.234
for operation purpose. sequential data.

e Cannot provide real-
time impact duration
prediction.

e Developed using a
minimal and biased
data set (only two types
of incidents), and it is
guestionable that it will
work under various
real-world conditions.

1.1.4 Modeling traffic impact duration using quantile regression. Khattak et al. (2016)

Khattak (8) developed dynamic impact duration models and provided better prediction results
than his previous models due to the capability of integrating additional information into the
dynamic models. Their approach was based on ordinary least squares (OLS) regression models
and able to predict primary and secondary impact durations.
They claimed that dynamic impact duration models predict impact duration more accurately
since different time stages will support successively more information as incident progress.
They tested both OLS and truncated regression models (their previous study) and claimed that
truncated regression models under-predicted impact durations, especially when longer
duration incidents were involved. The OLS regression model is shown below:
Ypuration = Bo + B1(TOD) + B,(WEATHER) + B3(LOCATION) + B,(AADT)
+ B<s(DETECTION) + B¢(VEHICLES) + B,(TYPE) + Bg(LANECLOSURE)
+ Bo(EMS) + B10(RTSHOULDER) + B11(RAMP) + B,,(LFSHOULDER) + €
Where:
[ = estimated parameters
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€ = error term

Ypuration = impact duration (minutes)

TOD = time of day incident occurred

WEATHER = is the bad weather or not

LOCATION = incident location

AADT = average annual daily traffic

DETECTION = incident detection source

VEHICLES = number of vehicles involved in the incident
TYPE = incident type

LANECLOSURE = whether traffic lane was closed or not
EMS = emergency medical service was present or not
RTSHOULDER = the right shoulder affected by the incident
LFSHOULDER = the left shoulder affected by the incident
RAMP = ramp affected by the incident

The input information will be updated as traffic operation center (TOC) is involved, and new
prediction based on new input data will be provided.

Data needs

Traffic data: AADT, detection source

Incident data: Incident type, number of vehicles involved.

Operations data: Whether response agencies are involved or not.

Time data: Time when incident is detected, time when incident is cleared, the peak time of day.
Location data: Location of the incident, number of lanes closed, whether left/right shoulder is
affected, whether a ramp is affected.

Weather data: Whether severe weather or not.

Model Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e The model has low e Best MAPE: 37%.
for operation purpose. accuracy.

e Can deal with time-
sequential data.

e Can provide real-time
impact duration
prediction.

e (Can predict both
primary and secondary
impact durations.

e Developed using a large
dataset (59804
incidents).
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1.1.5 A methodology for freeway impact duration prediction using computerized historical
database. Yu and Xia. (2012)

Yu and Xia (9) proposed a linear model with stepwise regression. Their model could generate a
preliminary prediction of impact duration when limited information about the incident is
known. They then compared their proposed model with a more traditional linear model and
claimed a more precise and dynamic prediction result by their model.
In their study, they provided a simple linear model shown below:

duration = 54.4 X exp(0.63weather + 0.147vehicle numbers + 0.263 lane blockage)
Where
duration = predicted the impact duration
weather = whether rain or not
vehicle numbers = number of vehicles involved in the incident
lane blockage = number of lanes blocked due to the incident

Before using their data to estimate a linear model, their distribution estimation results
indicated that their traffic incident followed a log-normal distribution and vehicle assistance
data followed a logistic distribution. They then estimated the accumulative probability of log-
normal and logistic distribution using historical data. To overcome the lack of available data,
they introduced a stepwise procedure. They aggregated the cumulative probability distributions
of different variables and used them to infer missing input data. They claimed that when more
incident data becomes available, their model will provide more accurate predictions since the
fitness of the estimated distribution would be improved with additional new data.

Data needs

Traffic data: None

Incident data: Incident type, number of vehicles involved, vehicle type, severity and fatality,
property damage

Operations data: Response time for the relief station, travel time for the relief station, process
time for an incident

Time data: Time when incident is detected, time when incident is cleared, day of the week,
time of day

Location data: Number of lanes closed

Weather data: rainy or dry

Model Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Developed using a e Best prediction error for
for operation purpose. minimal and biased duration less than 60
e Can deal with time- data set (only 503 minutes: 77.8%.
sequential data. incidents), and it is
e Can provide real-time questionable that it will
impact duration
prediction.
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e Can deal with missing work under various
data. real-world conditions.

e (Can provide better
prediction with updated
incoming data.

1.1.6 Cluster-based lognormal distribution model for accident duration. Weng et al. (2015)

Weng and his colleagues, (10) developed a cluster-based log-normal distribution model to
predict accident duration. They first used a decision tree approach to split the entire dataset
into three clusters, which are then treated as additional variables in modeling accident
duration.
In their study, they modeled impact duration as a random variable which follows a log-normal
distribution. Their decision tree method adopted F-test as the splitting criterion, and a detailed
variable selection procedure was provided. The lognormal distribution model is as below based
on 2512 incidents data:
Iny = 2.49 — 0.16x; — 0.03x3 + 0.07x, + 0.13x5 — 0.19x4 + 0.17x, + 4.6 X 10 5xg4
+ 0.10x;, + 0.98 X Cluster1 + 1.22 X Cluster2 + 1.60 X Cluster3 + €

6~N(O, 0'2)
Where
0% = 0.25x; + 0.66 X Clusterl + 0.33 X Cluster2 + 0.29 x Cluster3
1 ifxz <2
Clusterl = 3 )
e ] {0 otherwise
Cluster2 = {1 if x3 > 2 anfl X, <2,
0 therwise
Cluster3 = {1 if x; > 2 and x; > 2,
0 otherwise
Data needs

Traffic data: Traffic volume, traffic speed.

Incident data: Severity and fatality, property damage, number of vehicles involved.
Operations data: Number of notifications sent from operation center, number of responders
on the scene.

Time data: Time when incident is detected, time when incident is cleared, day of the week,
time of day.

Location data: Number of lanes closed.

Weather data: Rain, wind and visibility.

Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Need to predetermine e Best MAPE: 34.1%.
for operation purpose. the form of prediction
distribution.
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Can provide predicted
probabilistic
distribution of impact
duration.

Cannot deal with time-
sequential data.
Cannot provide real-
time prediction.
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1.1.7 Summary of Regression-Based Duration Models

For regression-based models, one common property is that the implementation of models can
be straightforward. However, most of the regression models require additional information
that is not currently available in the TRANSCOM data set provided to the research team.
Moreover, most of the regression models are estimated using a limited number of incidents,
which reduces their reliability and thus makes them unsuitable for real-world operations. In this
study, the emphasis is on operations use, reliability, and ability to dealing with sequential data.
Therefore, the model from Khattak et al., 2016 appears to be a better-suited model among all
the regression-based models reviewed in this section.

Table 2 Summary of regression-based duration prediction models
Regression-based duration prediction models

Model Performance TRANSCOM Highlights
Data
Compatibility
Khattak et | Not test Low Sequential/real-time model, operations,
al, 1995 unreliable
Garib et | Best Adj. R%: 81% Medium One-time model, not operations, unreliable
al, 1997
Peeta et | Best R%:0.234 Low One-time model, not operations, unreliable
al, 2000
Khattak et | Best MAPE: 37% High Sequential/real-time, operations, reliable
al, 2016
Yuand | Best prediction Low One-time model, not operations, unreliable
Xia, 2012 | error for duration
less than 60
minutes: 77.8%.
Weng et | Best MAPE: 34.1% Low One-time model, probabilistic, not
al, 2015 operations, reliable
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1.2 Classification Tree Method (CTM) based impact duration prediction methods

There are several studies that employed classification tree-based methods for the impact
duration prediction.

1.2.1 Incident Management in Intelligent Transportation Systems. Ozbay and Kachroo. (1999)

Ozbay and Kachroo (11) were among the first researchers to recognize that the non-
homogenous nature of the impact duration data interferes with the ability to use traditional
linear regression for model estimation. They reported that the impact duration values did not
follow either a lognormal or log-logistic distribution. They then employed the classification tree
to estimate the impact duration.

Data needs

Traffic data: None.

Incident data: Incident type, whether heavy vehicles are involved or not, severe injuries and
fatalities, property damage or not.

Operations data: Whether heavy wrecker is used or not, whether assistance from response
agencies is needed or not.

Time data: Time of day, day of week.

Location data: Total number of lanes, number of closed lanes, whether shoulders exist or not.
Weather data: Extreme weather or not.

Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Developed using a e Best correct
for operation purpose. minimal data set. classification rate: 60%.

e Can provide real-time
predictions.

e Assumed log-normal
distribution instead of
general Gaussian
distribution.

e Requires low
computation efforts.

1.2.2 Forecasting the clearance time of freeway accidents. Smith et al. (2002)

Smith et al. (12) investigated three forecasting models that can predict the clearance time of a
freeway accident, namely, a stochastic model, nonparametric regression model, and a
classification tree model. However, the results in this paper indicate that the classification
models are not promising, they also do not show a meaningful performance improvement from
the nonparametric regression models. Figure 4 shows the classification tree model diagram
presented in this paper.
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Figure 4 Classification tree model. Breiman et al. (13).

Data needs

Traffic data: None.

Incident data: Number of vehicles, whether trucks are involved or not, whether buses are
involved or not.

Operations data: Whether agencies response or not (EMS, police, FIRT, hazardous material
agency, VDOT), whether tow trucks involved or not.

Time data: Time of day, day of week.

Location data: None.

Weather data: Severe weather or not.

Model Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Model performance is e Best correct
for operation purpose. not satisfactory with classification rate: 58%.
e Can provide real-time only 58% correct
predictions. classification rate.

e Can deal with time-
sequential data.
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1.2.3 Automated estimation of impact duration on Dutch highways. Knibbe et al. (2006)

Knibbe et al. (14) proposed a classification tree method for real-time impact duration
estimation. In this approach, sequences of decision trees are constructed and used for
determining the expected duration interval of an incident. Table 3 shows the decision tree’s
main parameters in this paper. This approach can also be used for real-time impact duration
estimation.

Table 3 Main parameters for incident classification. Knibbe et al. (14).

Main Parameters Used For Incident Classification

Passenger car No casualties
Accident Casualties
Truck No casualties
Casualties
Incident ] Passenger car Malfunction
Stopped vehicle & .
Fire
Truck Malfunction
Fire
Load

Data needs

Traffic data: None.

Incident data: Incident type, vehicle type, number of vehicles involved, property damage.
Operations data: Whether response agencies are involved or not (Police, ambulance, road
manager, fire department), whether tow trucks are involved or not, whether repair service is
required or not, whether a police investigation is required or not, Type of towing required,
whether traffic control is required or not.

Time data: Time of day, day or week.

Location data: None.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Model performance is e Best correct
for operation purpose. not satisfactory. classification rate: 29%.

e Can provide real-time
predictions.

e Can deal with time-
sequential data.
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1.2.4 Impact duration prediction with hybrid tree-based guantile regression. He et al. (2013)

He et al. (15) used a hybrid tree-based quantile regression method, which incorporates the
merits of both quantile regression modeling and tree-structured modeling. The implementation
in this paper was based on the software provided by the developers of this method (Hothorn et
al. 2011). Significance levels for the test statistics were set to conventional levels (0.05) as
suggested in Hothorn et al. (2006). There were two unbiased recursive partitioning (URP) trees
with different sets of predictors. The first one, called URP treel, shown in Figure 5, was created
using all candidate variables. The second one (URP) was obtained using all but traffic variables
and is depicted in Figure 6. Specifically, URP tree2 is a subset of URP treel that did not contain
traffic data variables. The decision path of the tree model was followed by answering a yes or
no question at each node.
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Figure 5 URP treel (with traffic data). He et al. (15)
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Figure 6 URP tree2 (without traffic data). He et al. (15)

Data needs

Traffic data: Average speed, average traffic volume, average occupancy

Incident data: Incident type, number of vehicles involved, severities and fatalities, property
damage

Operations data: None

Time data: Time of day, day of week

Location data: Whether a ramp exists, whether happened on highway

Weather data: Rain or snow

Model Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Model performance is e Best MAPE: 49.1%.
for operation purpose. not satisfactory.
e Can provide real-time
predictions.

e Can deal with time-
sequential data.
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1.2.5 Prediction of lane clearance time of freeway incidents using the M5P tree algorithm. Zhan

etal. (2011)

Zhan et al (16) proposed an M5P tree algorithm for lane clearance time prediction. This
algorithm can work with categorical and continuous variables as well as variables with missing
values.

Figure 7 shows the three significant steps for M5 tree development: 1) tree construction; 2)
tree pruning; and 3) tree smoothing. The M5 tree construction process attempts to maximize a

measure called the standard deviation reduction (SDR). The SDR is defined as
T;:
SDR = sd(T) — % x sd(T;)
i
Where T is the set of cases, T; is the ith subset of cases that result from the tree splitting based
on a set of variables (attributes), sd(T) is the standard deviation of T, and sd(T;) is the

standard deviation of T; as a measure of error.
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&

Figure 7 M5 tree flowchart. Zhan et al. (16).

The developed M5P regression tree model is shown in Figure 8. The regression sub-models [see
(LM1)—(LMS5) in Figure 8] are listed as follows:
LM1 : 1t (Y,A) = 2.912 4+ 1.117 X NumRRAssists — 0.09 X TMCResponse
+ 0.091 x TMCVerification + 0.892 X Injury — 0.999 X ShoulderAvailable
+ 2.093 X hasFullBlockage + 0.542 x Weekend + 0.908 X Tractor
+ 1.602 X Truck — 0.496 X DisabledVehicle — 0.372 x CCTV
+ 0.023 x DMSCount
LM2 : Tt (Y,A) = 5.219 4+ 1.997 X NumRRAssists — 0.154 X TMCResponse
+ 0.887 X TMCV erification + 4.875 x SIRV + 12.104 X BUS
+ 3.613 X Tractor
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LM3: 1 (Y,A) = 7.142 — 4.971 X ShoulderAvailable 4+ 1.694 X NumRRAssists
— 0.155 X TMCResponse + 2.752 X Weekend + 0.080 x DMSCount
+ 7.017 x BUS + 7.025 X Emergency + 1.825 X Illumination
+ 2.080 X Rollover + 0.393 X VehicleCount + 2.826 X HasFullBlockage
+ 1.629 X Tractor
LM4 : 1 (Y,A) = —330.463 + 2328.506 X TotalActivities + 2058.012 X Injury
— 1649.351 X NumRRDispatches + 4103.359 x SIRV + 1743.637 X I595E
+ 851.413 X Weekend — 68.838 x TMCResponse
+ 60.161 x TMCVerification
LM5 : T (Y,A) = 5.581 + 2.095 X NumRRAssists — 2.466 X ShoulderAvailable
— 3.436 X Midday + 1.735 X Rollover — 3.422 X PM — 2.285 x AM
+ 1.989 X Tractor — 0.087 X TMCResponse + 4.554 X Truck
+ 0.581 X TotalLanes + 2.276 X Fire + 0.915 X Injury
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Figure 8 M5P regression tree for lane clearance time prediction. Zhan et al. (16).

Data needs

Traffic data: None

Incident data: Incident type, vehicle type, number of vehicles involved, injury and fatalities.
Operations data: Response times from the operation center, whether response agencies
involved or not (such as Road ranger, Highway patrol), whether detected by CCTV or not,
whether dynamic message sign (DMS) activated or not, number of on-site assists by the road
ranger, number of on-site assists performed by agencies

Time data: Time of day, day of week, time when incident is detected, time when incident is
cleared
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Location data: Total number of lanes, number of lanes closed, whether shoulders exist or not
and whether shoulders blocked or not.

Weather data: Rainy or dry, severe weather or not.

Visibility data: Clear or foggy.

Model Highlights

Advantages Disadvantages Model performance
e Simple and easy to use e Model performance is e Best MAPE: 42.7%.
for operation purpose. not satisfactory.
e Provides real-time
predictions.

e Deals with time-
sequential data.
e Deals with missing data.
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1.2.6 Summary of Classification Tree Method (CTM) models

Most of classification tree methods require incident attributes such as severity, number of
vehicles involved, and incident operation condition. This type of data is not provided in
TRANSCOM database. Moreover, most CTM models do not have good classification rates.

Table 4 Summary of Classification Tree (CTM) based Impact duration Methods
Classification Tree (CTM) based Impact duration Methods

Model Performance TRANSCOM Highlights
Data
Compatibility
Ozbay and
Correct rate: . . I
Kachroo, Low Sequential model, real-time prediction
60%
1999
Smith et al, | Correct rate: Low Sequential model, bad performance, not
2002 58% operations, real-time, unreliable
Knibbe et Correct rate: Low Sequential model, simple, not operations,
al, 2006 29% real-time, unreliable
He et al, tial [ t t [-ti
eetal, MAPE: 49.1% Medium Sequentia mo_de ca_m extend to rea _ ime
2013 model, operations, interpretable, reliable
Zhan et al, MAPE: 42.7% Low Ca.n faxtend to real—tim_e model, d_eal with
2011 missing values, operations, unreliable

1.3 Artificial neural network-based impact duration methods

1.3.1 Sequential forecast of impact duration using Artificial Neural Network. Wei and Lee.
(2007)

Wei and Lee (17) used an Artificial Neural Network (ANN) as well as data fusion technique to
build a multi-period forecast model for predicting the impact duration. They proposed two
types of impact duration models (Model A and B) to perform forecasts in impact duration.
When an incident is noticed for the first time, they used Model A to perform a preliminary
forecast of the impact duration. After the incident, Model B takes over from Model A to
perform forecasts with updated data. Model A and B together provide a sequential forecast for
the impact duration. Their study only considers the car accident data for modeling building and
evaluation. The model structure is as follows:
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Figure 9. Impact duration forecast flowchart. Wei and Lee (17).

Data needs

Traffic data: Traffic volume, traffic speed.

Incident data: Incident type, vehicle type, number of vehicles involved.

Operations data: None.

Time data: Time when incident is detected, time when incident is cleared.

Location data: Location of the incident, whether an interchange exists between the incident
and the detector, whether a toll plaza or service area exists between the incident and the
detector, the distance between the incident and detector locations.

Weather data: None.

Model Highlights

Advantages Disadvantages Model performance
e Provides real-time e The model is trained e Best MAPE: 29%.
prediction (both with a minimal and
immediate and updated biased dataset (only
prediction). one incident type and
39 incidents).
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e Deals with time- e Requires heavy
sequential data. computation effort and
time-consuming.

1.3.2 Interpretation of Bayesian neural networks for predicting the duration of detected
incidents. Park et al. (2016)

Park et al (18) introduced a Bayesian neural network model to predict the impact duration.
They applied Monte Carlo algorithm to update BNN parameters and adopted a pedagogical rule
extraction algorithm (TREPAN) to extract decision trees to explain potential relationships
present in incident nature. In other words, they combined a Bayesian neural network model
with decision tree technique to provide both predictive and explanatory impact duration
results. The methodology is as follows:

-
45239 4 &
1D:452 &

X A
4524 &P
1D:45240 o\Q

&

Fatality &S

Night

Input layer Hidden layer Output layer

Figure 10 Structure of the Bayesian neural network. Park et al. (18)

During the implementation of the Bayesian neural network, they applied hybrid Monte Carlo
(HMC) to sample the posterior distribution to get predictive results. They then applied TREPAN
to extract rules from Bayesian neural network models and form a decision tree to interpret the
predicted impact duration as follows:
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Figure 11 Extracted decision tree from Bayesian neural network. Park et al. (18).

Data needs

Traffic data: Travel time before and after the incident occurrence.

Incident data: Incident type, number of vehicles involved, vehicle type, severities, and fatalities.
Operations data: Type of operations center agencies, whether the incident clearance is
operated by highway response team or police department, type of response equipment
involved.

Time data: Time of day, time when incident is detected, time when incident is cleared.

Location data: Number of lanes closed.

Weather data: Snow or rain.

Advantages Disadvantages Model performance
e Provides interpretable e Require heavy e Best MAPE: 18%.
results. computation effort
e Provides probabilistic (Monte-Carlo
distribution of simulation) and time-
predicted duration. consuming.
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1.3.3 Summary of Artificial Neural Network models

For artificial neural network models, one significant property is that they can achieve high
accuracy by training historical dataset. Both of the two selected models can provide immediate
duration prediction when an incident is detected/reported. Furthermore, Wei and Lee’s model
can update the model itself by occupying the second ANN model and read in upcoming data to
provide an accurate incident prediction. One drawback of ANN models is that it usually requires
heavy computation, which may lead to a low prediction frequency and cannot be used for real-
time operations.

Table 5 Summary of artificial neural network models

Artificial neural network models

Model Performance TRANSCOM Highlights
Compatibility
Wei and Best MAPE: High Provide immediate and updated duration,
Lee, 2007 29% operations, one-time and real-time capable,
reliable
Park et al, Best MAPE: Medium Probabilistic, interpretable, one-time and real-
2016 18% time capable, reliable

1.4 Bayesian Network-based impact duration prediction methods

1.4.1 Estimation of incident clearance times using Bayesian Networks approach. Ozbay and
Noyan. (2006)

Ozbay and Noyan (19) were the first researchers to use Bayesian Networks (BNs) to model the
incident clearance durations. Considering the stochastic variation and presence of incomplete
information of incident data, BNs is a powerful modeling and analysis tool to create dynamic
impact duration estimation trees because of its three main advantages, which are bi-directional
induction, incorporation of missing variables and probabilistic inference. BNs consist of two
components, one is a directed acyclic graph, and the other is the probability distribution over a
set of random variables. By learning over the space of possible graph structures and model
parameters with the relationships suggested by the data, a Bayesian scoring algorithm is used
to find the BN that maximizes the scoring criterion. The BN with the highest score is shown in
Figure 12. Figure 13 shows the conditional probability distributions for some of the variables in
this BN. Through rigorous validation of the estimated trees using real-world data set collected
in Northern Virginia, the prediction methodology is shown to be fully capable of representing
the stochastic nature of incidents.
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Figure 13 Posterior conditional probability distributions of the nodes. Ozbay and Noyan (19)

Data needs

Traffic data: None.

Incident data: Incident type, injuries and fatalities, number of vehicles involved, vehicle type.
Operations data: Number of response agencies involved.

Time data: Time when incident is detected, time when incident is cleared.

Location data: Type of roadway, number of lanes.
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Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Provides real-time e Needs to be improved e Accuracy rate: 80%.
predictions. by testing various prior
e Deals with time- distributions on the
sequential data. decision variable.

e Deals with missing data.
e Captures the stochastic
nature of incidents.

e Provides interpretable
results and easy for
operations use.

1.4.2 A naive Bayesian classifier for impact duration prediction. Boyles et al. (2007)

Boyles et al. (20) developed a probabilistic model based on a naive Bayesian classifier (NBC) for
prediction of impact duration. The proposed model can readily accommodate incomplete
information or information received at different points in time, both of which are
characteristics of the incident management process. Similar to other classifiers, NBC can
calculate the probability of our objective belonging to a discrete set of categories, conditioning
on the observed attributes. The final result of the objective is typically assigned to the category
with the highest probability. In the context of impact duration prediction, the observed
attributes correspond to observable incident characteristics, such as number of injured persons,
number of blocked lanes, location of the incident, weather conditions, and so on. The NBC
classifies incidents into one of three categories: those lasting less than half an hour, between
half an hour and an hour, and longer than an hour. The proposed model includes sixty-two
attributes. When applied to the validation set, the results of NBC classifier are compared with a
linear regression model. The validation results showed that NBC can provide a more
straightforward, more flexible, and more useful approach than the regression model without
scarifying prediction accuracy.

Data needs

Traffic data: None

Incident data: Incident type, injuries and fatalities, number of vehicles involved, vehicle type,
property damage

Operations data: None

Time data: Time when incident is detected, time when incident is cleared

Location data: Type of roadway, number of lanes affected

Weather data: None

Model Highlights
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Advantages Disadvantages Model performance

e Provides real-time e Model performance is e Correct classification
predictions. not satisfactory with rate: 50%.
e Provides robust the correct classification
prediction to outliers rate of 50%.
than regression models. e Cannot provide a
e Captures the stochastic distribution of impact
nature of incidents. duration.

e Provides interpretable
results and easy for
operations use.

1.4.3 Traffic impact duration prediction based on the Bayesian decision tree method. Ji et al.
(2008)

Jiet al. (21) presented a prediction model based on a Bayesian decision tree model to estimate
traffic impact duration. This model is defined as a Bayesian decision tree model because
Bayesian nodes are inserted into the generic decision tree model, as shown in Figure 14. Each
Bayesian node contains a value which is either “0” or “f’. If the characteristic object
information is complete, the value of Bayesian node is “0” and there are no calculations.
However, if the object characteristic is missing, the value of Bayesian node will be set to “f’ and
need to be calculated later. The proposed model is capable of dealing with “dirty” traffic
incident data, which may contain incomplete or inconsistent information. The theoretical
accuracy of this model is higher than traditional classification tree models.

attribution node

test node
bayesian node

= [ n, ] [ n, ][ n, } n, attribution node

Figure 14 Illustration of Bayesian decision tree model. Ji et al. (21)

Data needs
Traffic data: None.
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Incident data: Incident type, vehicle type, property damage.

Operations data: Whether roadway is closed or not, whether response agencies involved or not
(police, road manager, tow truck).

Time data: Time when incident is detected, time when incident is cleared, day of week.
Location data: None.

Weather data: None.

Model Highlights

Advantages Disadvantages Model performance
e Provides real-time e Cannot deal with time- e Best correct
predictions. sequential data. classification rate: 74%.
e Provides robust e Cannot provide a
prediction to outliers distribution of impact
than CTM models. duration.

e Captures the stochastic
nature of incidents.

e Deals with missing data.

e Provides interpretable
results and easy for
operations use.

1.4.4 Data mining method for impact duration prediction. Shen and Huang. (2011)

Shen and Huang (22) developed a Bayesian Network (BN) model for predicting impact duration
based on the time sequence of incident management stages after an incident is verified by the
Fort Lauderdale Traffic Management Center (TMC) in Florida and response vehicle arrived at
the incident location. A BN represents the cause-effect relationships and conditional
dependencies between variables of interest by a directed acyclic graph and local conditional
probability distribution for each node that defines the joint probability distribution. Since BN
cannot handle continuous variables, it is necessary to discretize the continuous impact duration
variables into nominal variables first. Through structural learning and probability inference, the
structure of a BN can be determined. This network is used as the basis to compute probabilities
of interest-based on the Bayes’ theorem. The constructed model structure of the final graph is
shown in Figure 15. The advantage of this model is that the probability results are
straightforward and the prediction accuracy is acceptable. In addition, given the apparent
varying nature of impact duration data, this model is robust with respect to outliers by
classifying incidents into broader categories according to some field applications.
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Figure 15 Structure of the learned Bayesian Network. Shen and Huang (22)

Data needs

Traffic data: None.

Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and
fatalities, property damage.

Operations data: Whether response agencies involved or not, whether first notify Traffic
management center or not.

Time data: Time when incident is detected, time when incident is cleared, time of day, day of
week.

Location data: Roadway type, total number of lanes, number of lanes closed, pavement
conditions.

Weather data: Rainy or dry, daylight on or not

Highlights

Advantages Disadvantages Model performance
e Provides real-time e Cannot deal with e Best correct
predictions. continuous variables. classification rate:
e Provides robust 72.6%.

prediction to outliers
than CTM models.

e Captures the stochastic
nature of incidents.

e Provides interpretable
results and easy for
operations use.
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1.4.5 Adaptive learning in Bayesian networks for impact duration prediction. Demiroluk and

Ozbay. (2014)

Demiroluk and Ozbay (1) developed a new adaptive model based on Bayesian networks for
impact duration prediction. They adopted three types of Bayesian network structures, including
Naive Bayes model, tree-augmented naive Bayes model (TAN) and K2 model to discover the
best Bayesian network for impact duration prediction. In the validation section, they used BIC
(Bayesian Information Criterion) scores to assess the overall fithess of models and facilitate the
comparison of these three models. They then proposed an adaptive learning algorithm for real-
time prediction of impact durations. Their model showed an increase in prediction accuracy
with the use of the adaptive learning algorithm and provided reasonable (best correct
classification rate as 93.3%) prediction results. Figure 16 shows the mechanism of adaptive
learning as part of the best Bayesian network model identified in the previous step.

Adaptive Incident | _
Duration Model //
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kN Y
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Interval ¢ /f' fort /r'
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- Y & | |
Data for / Predict Durations Predict Durations
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Figure 16 Adaptive learning mechanism in the context of Bayesian network model. Demiroluk
and Ozbay (1)
Data needs
Traffic data: None.
Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and
fatalities, property damage.
Operations data: None.
Time data: Time when incident is detected, time when incident is cleared, time of day, day of
week, month of year.
Location data: Roadway type, pavement conditions, distance from the closest exit.
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Weather data: clear or not, rain or not, snow or not, fog or not
Light data: daylight or not, dawn or not, dusk or not, dark or not.

Highlights

Advantages Disadvantages Model performance
e Provides real-time e The prediction accuracy e Best correct
predictions. is relatively low with classification rate:
e Deals with time- limited real-time data. 63.1% (without
sequential data. adaptive learning),
e Provides robust 93.3% (with adaptive
prediction to outliers learning).

than CTM models.

e Captures the stochastic
nature of incidents.

e Provides interpretable
results and easy for
operations use.

e Deals with missing data.
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1.4.5 Summary of Bayesian Network models

Bayesian Network-based impact duration prediction models require more data than the data
that is currently available in the TRANSCOM database. One significant feature of Bayesian
network models is interpretability. An operator can obtain the significance of each variable in
the prediction process. Demiroluk and Ozbay’s model can automatically adapt itself to future
conditions by learning the patterns of new incidents and their respective conditions. Their
model is not only able to work with variables with missing values, but also provide a
distribution of predicted impact duration. Their model provides relatively low accuracy due to
the limited on-line real-time data without the use of adaptive learning structure. When more
operations data becomes available, this model can, however, provide reasonably accurate
predictions with the use of adaptive learning structure.

Table 6 Summary of Bayesian Network-based impact duration prediction models
Bayesian Network-based impact duration prediction models

Model Performance TRANSCOM Highlights
Compatibility
Ozbay and Best correct Medium Interpretable, capture stochasticity,
Noyan, classification sequential model, operations, reliable
2006 rate: 80%.
Boyles et al, Best correct High Interpretable, capture stochasticity,
2007 classification sequential model, operations, unreliable
rate: 50%.
Jietal, 2008 Best correct Low Deal with missing data, sequential model, not
classification operations, reliable
rate: 74%.
Shen and Best correct Low Interpretable, capture stochasticity,
Huang, classification sequential model, not operations, reliable
2011 rate: 72.6%.
Demiroluk Best correct Medium Interpretable, adaptive learning, real-time
and Ozbay, classification prediction, operations
2014 rate: 63.1%.
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1.5 Hazard-based impact duration prediction models

Various hazard-based models have been employed to predict impact duration. The log-logistic
distribution was first used to describe freeway impact duration in the model of Jones et al.,
1999. They adopted hazard-based regression to identify influencing factors of highway impact
duration. However, their model used the same model and parameters during the whole process
of highway incidents. Later on, Nam and Mannering, 2000 improved their model by introducing
multiple stages (detection, response, and clearance) of traffic incidents and provided different
models at different stages, respectively. They adopted hazard-based regression to identify
influencing factors of traffic incidents at different stages. In this section, we will introduce
another hazard-based model which employs hazard-based regression at multiple stages and
provides real-time predictions for traffic incidents.

1.5.1 An information-based time-sequential approach to online impact duration prediction. Qi
and Teng. (2008)

Qi and Teng (23) proposed a time-sequential procedure which can provide an online prediction
of impact duration. The procedure contains multiple stages during the incident management
process. For each stage, they applied a hazard-based duration regression model with different
variables representing the available information. They used the remaining impact duration as
the definition of impact duration and concluded that the accuracy of the prediction of impact
duration increases as more information becomes available and then is incorporated into their
models.

Their procedure for on-line incident prediction contains three stages; different hazard-based
regression models are applied at each stage. Figure 17 shows the incident management process
with different stages.

Model 1 Model 2 Model 3

Incident Incident Incident Clearing Time
Occurred Reported Verified Starts

Figure 17 Time-sequential procedure for the prediction of remaining impact duration. Qi and
Teng (23)

Stage 1: Started by an incident being just reported, an operator in a traffic management center
may want to know how long it may take to clear an incident from a road. The input of Model 1
includes where the incident occurred, the weather, and the time when the incident happened.
Stage 2: Started with the verification of the incident. Model 2 receives extra information with
the type of the incident and the types of vehicles involved in the incident.

Stage 3: Begins at the onset of the clearance of the incident, the operator may want to update
the prediction of the time needed to clear the incident based on additional information such as
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which agency and what facilities are involved in the clearance activities, such information are
also inputs for Model 3.

The hazard function is written as:
h(t) = Ap(A)P71/[1 + (At)P]
This function suggests that, if p < 1, the likelihood that an incident will end soon monotonically
decreases with the length of impact duration. Otherwise (i.e., if p = 1), this likelihood will first
1

increase from 0 to a maximum at a critical point t = (p — 1)? /A and then decrease.
The effect of external covariates, x;, on impact duration can be incorporated by writing
A = exp (—pX)
The parameters of the probability distribution p and 4, and the coefficients of the duration
model 5, can be estimated by maximum likelihood estimation using the likelihood function:

In —Zho t; exp (—BX,)]exp (—BX;) + Zso[t exp (—fX)]
Where Sy(t) = 1/(1 + (t)p) and ho(t) = p()P71/[1 + (t)p]

Data needs

Traffic data: None

Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and

fatalities, property damage.

Operations data: Type of response agencies involved (Police, NYCDOT), whether tow truck is
involved or not.

Time data: Time when incident is detected, time when incident is cleared, time of day, day of
week.

Location data: Roadway type, number of lanes closed.

Weather data: Snow or clear, rain or dry

Model Highlights

Advantages Disadvantages Model performance
e Provides real-time e The form of predicted e Better accuracy as more
predictions. distribution needs to be data coming into the
e Deals with time- pre-determined. model.

sequential data.

e Provides interpretable
results and easy for
operations use.

e Provides better
prediction with updated
incoming data.
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1.6 Support Vector Machine (SVM) based impact duration prediction models

1.6.1 A comparison of the performance of ANN and SVM for the prediction of traffic accident
duration. Yu et al. (2016)

Yu et al. (24) applied a comparative study of the performance of Artificial Neural Network
(ANN) and support vector machine (SVM) for the prediction of traffic impact durations. SVM is
a type of learning algorithms based on statistical learning theory, which can be adjusted to map
the input-output relationship for the non-linear system.
An SVM estimator (f) on regression can be expressed as:

fGx)=wo(x) +b
Where ¢ denotes a nonlinear transfer function that maps the input vectors into a high-
dimensional feature space in which the sample data are linearly separable.
With the induced loss function, the SVM estimator can be converted to an optimization
problem:

n
R(a;,a;) = Z(ai —a))K(x,x;) +b
i=1

Where K (x, x;) is the kernel function which maps the nonlinear regressors into linear
regressors by adopting Lagrange multipliers. The structure of the SVM is shown in Figure 18.

X1
X2
X K(x;, x) f(x) —> The result
Xi .
Xn K (xa, X)

Figure 18 Structure of SVM. Yu et al. (24)

This study applied a K-means clustering method to select significant variables from incident
dataset and input such variables into the SVM model in Figure 19.
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Figure 19 Structure of SVM for predicting the impact duration. Yu et al. (24)

Data needs

Traffic data: None.

Incident data: Incident type, vehicle type, severity, injuries and fatalities, property damage.
Operation data: None.

Time data: Time when incident is detected, time when incident is cleared, time of day, day of
week.

Location data: None.

Weather data: Whether severe weather or not.

Highlights

Advantages Disadvantages Model performance
e Provides interpretable e Cannot deal with time- e Best MAPE: 19%.
results and easy to use sequential data.

operations.

Cannot provide real-
time predictions.

Only tested with
freeway accident data,
it is, therefore,
questionable for other
real-world applications.
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1.6.2 Summary of hazard-based and SVM-based impact duration prediction models

For hazard-based impact duration prediction models, Qi and Teng et al. provided a three-stage
model, which covered the time when an incident is reported, the time when the incident is
confirmed/verified, and the time when the incident is cleared. This model can provide
immediate duration prediction when an incident is first reported with limited available data.
The model is also able to provide updated predicted duration when more information is coming
in and provide better accuracy. This model is suitable for operations use and provides reliable
results.

For supported vector machine (SVM), the selected model can provide reliable results. However,
the model requires additional data that is not currently available in the TRANSCOM database.
Moreover, the model was only tested and trained using freeway accident data, which may not
be able to be compatible with other types of non-recurrent incidents in our study region.

Table 7 Summary of hazard and support vector machine (SVM) based models
Hazard-based model

TRANSCOM
Model Performance data Highlights
compatibility
Qi and Better accuracy
Teng with more data High Three-stage model, provide immediate and
! becoming updated duration, operations, reliable
2008 .
available
Support vector machine (SVM)
Yu et al, Best MAPE: Low Interpretability, one-time model, not
2016 19% operations, reliable

1.7 Estimation of incident recovery time

Incident recovery time refers to the time difference between the clearance of the incident and
the time when the traffic flow conditions return to normal. The estimation of incident recovery
time plays an important role at the operational level. When an incident is detected, operators
need to know when the affected traffic flow will return to normal conditions. Usually, they
regard the recovery time as an essential measure in their decision-making process. However, it
is not easy to determine the incident recovery time using only travel time data since it is
challenging to be sure that incident is the only reason for increased link travel times. Moreover,
most impact duration prediction studies have so far ignored the problem of the prediction of
the incident recovery time (25) and (26). In this study, we include an empirical method (25),
which allows estimating incident recovery time based only on travel time data. The model is
able to provide a reasonable estimation of incident recovery time by comparing the background
travel time profile to the current travel time under incident conditions. Moreover, the model
can capture the incident recovery time without any model assumptions and calibrations.
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1.7.1 Empirical methods for estimating traffic incident recovery time. Zenq and Songchitruksa.

(2010)

Zeng and Songchitruksa (25) adopted travel time for incidents and non-incidents to develop the
model of estimating incident recovery time. Their proposed method uses percentile statistics to
establish the background conditions that represent travelers’ anticipation under incident-free
conditions and then employs the concept of the difference in the travel time and information
from the incident database to estimate traffic recovery time. Their proposed method involved
four main steps:

1. Determine a background travel time profile.

2. Obtain a current travel time profile under incident conditions.

3. Estimate incident recovery time from the difference-in-travel-time profile.

4. Determine the reliability of the estimates.
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Figure 20. Travel time profiles for estimating traffic recovery time. (25)

They used a so-called “median-based profile approach” to determine the background travel
time profile. The background profile should be constructed from the data that share common
traffic patterns (e.g., same peak periods, the same day of the week, or weekdays versus
weekends). For each of these profiles, the background travel time value (BTT) at the jth interval
will be:

BTT; = median(tt, tty), .., tty;) n >3
Where n is the number of days considered in constructing the median profile.
They obtain the current travel time profile from both recurrent and incident-induced
congestions. By superimposing the incident-affected travel time profile on the background
profile, the difference-in-travel-time profile can be determined and used as a basis for
estimating the traffic recovery time. The traffic recovery time can be expressed as:
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TRE — {t,’go, —t5; TT; — BTT; > a
0; TT; —BTTj < a

Where
TR¥* = traffic recovery time for incident k
TT]-" = travel time under the impact of incident k at time interval j
t{,f, t¥,; = incident clearance time (removal time) of incident k and time at the end of impact
(EOI) respectively
a = tolerance value that specifies the maximum difference between current travel time and
background travel time before the end of the traffic recovery process can be specified.

Data needs

Traffic data: Travel time data (5 minutes aggregation).

Incident data: Incident type, vehicle type, number of vehicles involved, severity, injuries and
fatalities, property damage.

Operations data: None.

Time data: Time when incident is detected, time when incident is cleared, time of day, day of
week.

Location data: Number of lanes closed.

Weather data: Whether severe weather or not.

Highlights

Advantages

Disadvantages

Model performance

e Simple and easy for
operations use.
e Providesincident

May not represent
actual background
traffic conditions

Within +/- 10 minutes
of median recovery
time.

accurately (using
median travel time
profile only).

recovery time
estimation.

1.8 Data needs from reviewed models and their compatibility with TRANSCOM data

Below we provide a summary of data needs based on all the impact duration models reviewed
versus available data from TRANSCOM. It is important to note that every model does not need
all the data shown in Table 8. The team will make its final predictive model selection
recommendation for the short-run based on the currently available data. Moreover, if a model
is deemed promising but not recommended due to the immediate unavailability of data from
TRANSCOM then it will be identified as a candidate model that can be tested in the mid-term
contingent upon the availability of required data in the near future. For example, TRANSCOM
communicated with the Team their plans for acquiring more incident response data in real-time
such as number and types of response vehicles on-site and when and if this data becomes
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available in the future, there will be an opportunity to test other suggested but not selected
model(s) that will be included in the recommendations section.

Table 8 TRANSCOM data compatibility on reviewed duration prediction models

TRANSCOM
Incident Incident type °
attributes Impact duration °

Traffic
attributes

Time
information

Operation

Vehicle
involvement

Visibility

Injury/fatality/property damage
Real-time traffic volume
Traffic speed (before, during and after traffic
incidents)
Response time
Time first/last witnessed
Time of police/tow truck arrival
Time of clearance
Time of day
Day of week
Month of year
Number of lanes affected
Incident direction
Which lane
Left/right shoulder
Ramp/exit/corridor
Number of notifications sent
Workload of crew
Number of agencies involved
Provision of traffic information to motorists
Number of vehicles involved
Number of trucks involved
Number of rescue vehicles/equipment used
Rain/snow/sunny
Dark/bright
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2. Traffic delay estimation/prediction

Traffic delay estimation/prediction is the second part of the predictive non-recurrent delay
modeling methodology described in the beginning sections of the document, which mainly
includes analytical and data-driven approaches. For analytical models, there are both
deterministic and stochastic approaches. For data-driven models, methods including statistical
regression, machine-learning techniques are reviewed in detail.

Impact duration is one of the critical inputs for traffic delay estimation/prediction models. This
section first starts with the review of traffic delay estimation/prediction models for non-
recurrent incidents as well as short-term work zone-related delay models for completeness
purposes. The main reason for including work-zone literature is because a short-term work
zone with mainly local impact is a particular type of non-recurrent incident where some of the
theoretical model developments can also be applied to all non-recurrent incidents in general.

2.1 Analytical models for the estimation/prediction of traffic delay

2.1.1 Incident management integration tool: dynamically predicting impact durations,
secondary incident occurrence, and incident delays. Khattak et al. (2012)

Khattak et al. (27) proposed a deterministic delay model that can deal with dynamic incident
delay prediction. The main inputs to the delay prediction model are:
1. incident severity which is directly related to incident reduced capacity
2. impact duration, which affects the length of time it takes to clear the incident
3. arrival rate (traffic demand) and road geometry information such as the number of lanes.
Moreover, the predictive outputs of the model include total traffic delay and maximum queue
length.
The calculation of queue length at a given time and the remaining total delays on a specified
freeway segment are illustrated in Figure 21. Traffic arrives at the incident location according to
curve A.(t). The departure curve D.(t) shows the departure from the incident bottleneck. The
departure flow rate is initially u*, the reduced capacity of the bottleneck and then after the
incident blockage is cleared at the time T, the capacity is restored at . The variables t,,_1, t,,
represent the (n — 1)th and nth time intervals from the incident start time — the time interval
is set at 10min, representing the minimum period when a traffic arrival rate remains steady.
The traffic arrival curve consists of a number of small time-dependent arrival rates. The current
queue length for a given time t; can be expressed as:

q(t) = q(tn-1) + (& — tp) (A — ") forty_1,t; <T;

q(ti) = q(tn—l) + (ti - tn—l)(ln - [,l) fOT -1t < Tc
As long as all of the queue lengths for t;, t,,, ..., t, are calculated, the remaining total delay for a
given time t; is the shaded area between t; and T,, which is the summation of small trapeziums
between arrival and departure curves right after t;. The areas of the first three trapeziums can
be written as:

1
A= E(q(tn) +q(t)) X (tn — t)
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1
Az = E (Q(tn+1) + q(tn)) X (tn+1 - tn)
1
A3 = E(q(tn+2) + Q(tn+1)) X (tn+2 - tn+1)
The remaining total delay at t; is the sum of Ay, where k = 1,2, ... represents the trapeziums.

'y
Cumulative traffic volume

A(r)

¥ Y ¥ Y >

T, g G L,y 1 14 Ts Time

Figure 21 General deterministic queuing diagram of incident delay. Khattak et al (27)

Data needs

Traffic data: Traffic volume, roadway capacity.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week.

Location data: Total number of lanes, number of lanes closed.
Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model e Not provided.
operations use. may overestimate or
e Provides real-time delay underestimate traffic
estimation. delay.

e Cannot provide travel
time prediction.
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2.1.2 Estimation of incident delay and its uncertainty on freeway networks. Li et al. (2006)

Li et al (28) stated that traditional deterministic traffic delay estimation methods could not
account for the stochastic attributes of dynamic traffic networks. They introduced a stochastic
traffic delay model, which can calculate the variance and expected a total delay in dynamic
networks. Their model was developed from the deterministic delay model and calculate the
mean traffic delay in the same way as the deterministic model does. They incorporated the
coefficient of variation of impact duration into the variance of delay and captured the total
delay with its stochasticity.

The variance of delay function:

Varld(t,r,s1)] = {

The expected total delay function:

[@-5)*+ad]a+x") (@-35)% ,
3 4z |"

[(5:% + o) —(s+q)5 + sq](1 + x?)7?
2(s —q)

E[TD(t,r,s,)] =

Where

s = freeway capacity, which is also the departure rate after the incident
s, = reduced freeway capacity during the incident

q = traffic flow rate

r = impact duration

t. = congestion clearance time

x = % is the coefficient of variation of impact duration

Data needs

Traffic data: Traffic volume, roadway capacity.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week, time when incident is cleared.
Location data: Length of affected roadway.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Cannot provide real- e Not provided.
operations use. time travel time
e Provides real-time delay prediction.
estimation. e Low compatibility with
e The stochastic model TRANSCOM data.

provides a distribution
of traffic delay.
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2.1.3 Proposed model for predicting motorist delays at two-lane highway work zones. Cassidy
and Han. (1993)

One particularly important factor that directly affects delay and queue length is the length of
the work zone. Cassidy and Han (29) estimate delay and queue length as a function of work
zone length.

The model splits the work zone delay into two delay components, one is queueing delay, and
the other is a travel time delay. The definition of queueing delay is that once cycle length and
effective green and red times are computed, queueing delays and queue lengths can be
determined using queueing theory. The definition of travel time delay is the difference between
the actual average travel times through the work zone and the average travel times without the
work zone.

Data needs

Traffic data: Traffic volume, roadway capacity, saturation headway, start-up lost time, ending
lost time, travel time, traffic speed.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week.

Location data: Length of affected roadway.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model, e Not provided.
operations use. may overestimate or
e Provides real-time delay underestimate traffic
estimations. delay.

e Cannot provide real-
time travel time
prediction.

e Low compatibility with
TRANSCOM data.

2.1.4 Traffic characteristics and estimation of traffic delays and user costs at Indiana freeway
work zones. Jiang. (1999)

Jiang (30) estimated work zone delays under several different categories: vehicle deceleration
before entering work zones, moving delays experienced by vehicles passing through work zones
at lower speeds, acceleration delays experienced by vehicles accelerating after existing work
zones, and queuing delays caused by the ratio of vehicle arrival to discharge rates.

Note: this model applied M/M/1 queueing theory to calculate the length of the queue when
the traffic flow rate is below the work zone capacity. Vehicles may arrive at a Poisson
distribution and exponentially distributed through the work zone.
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Logistics of the model:

DELAY; = F,; [dy +d, +d, + (1 —t))d, ]+ D,
Where,
Fai = hourly volume of arrival vehicles at hour i
dq = delay due to vehicle deceleration before entering the work zone
d; = delay due to reduced speed through the work zone
da = delay due for resuming freeway speed after exiting the work zone
dw = delay due to vehicle queues during uncongested traffic
D = delay due to vehicle queues during congested traffic

m
QUEUE LENGTH = Q, + z F,; — mF,

i=1
Where,
Q, = original vehicle queue
F,;=hourly volume of arrival vehicles at hour i
F;= vehicle queue discharge rate

Data needs

Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, vehicle acceleration
rate.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week.

Location data: Length of affected roadway.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model, e Not provided.
operations use. may overestimate or
e Provides real-time delay underestimate traffic
estimations. delay.

e Built for work zone
delay only, additional
efforts may need for
adapting other incident

types.
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e Cannot provide real-
time travel time
prediction.

e Low compatibility with
TRANSCOM data.

2.1.5 Optimal work zone lengths for four-lane highways. Chien and Schonfel. (2001)

The main objective of Chien and Schonfel’s (31) study is to optimize the work zone length when
the traffic flow rate is lower than the work zone capacity. When the traffic flow rate is lower
than the work zone capacity, they also proposed a model to estimate the queue delay.
Logistics of the model:
1 —c

tg = E(l + %) (Q — cw)(z3 + z,L)?
Where,
cw = the work zone capacity
Co = roadway capacity in normal conditions
Q = approaching traffic flow
Z3 = the work zone setup time
z, = the additional time required per work zone kilometer
L =the work zone length

Data needs

Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, vehicle saturation
headway.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week, fixed setup time of work zone.

Location data: Length of work zone.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model, e Not provided.
operations use. may overestimate or
e Provides real-time delay underestimate traffic
estimations. delay.

e Built for one-lane
closure work zone delay
only, additional efforts
may need for adapting
other incident types.
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e Cannot provide real-
time travel time
prediction.

e Low compatibility with
TRANSCOM data.

2.1.6 Freeway work zone traffic delay and cost optimization model. Jiang and Adeli. (2003)

Jiang and Adeli (32) proposed a deterministic queuing model for both short term and long term
work zones based on average hourly traffic flow. The model splits the total delay into two parts:
upstream queue delay time (t;) and the moving delay time (t,).

Logistics of the model:
ti+D-1 ti+D-1 ti+D-1

tg=tg+tm = z (@At) + Z At,, = z (@At+mm)
t=t; t=t; t=t;
Terpe = max {T; — 5,0}
s=cy, —asfar Long termwork zone

{s =co— Asfpr  Short term work zone
Where,
t, = total queueing delay
t; = the starting time at the work zone in hours ranging from 1 to 24
D = the time period required to complete the maintenance for the work zone
At = the given time period
T =the cumulative number of vehicles
At,,, = the moving delay time
¢y = work zone capacity
¢y = freeway capacity without work zone
a = seasonal demand factor

Data needs

Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, vehicle saturation
headway.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week, fixed setup time of work zone, seasonal demand factor.
Location data: Length of work zone.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model, e Not provided.
operations use. may overestimate or
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e Provides real-time delay underestimate traffic

estimations. delay.

e Provides both short- e Built for work zone
term and long-term delay only, additional
delay estimations. efforts may need for

adapting other incident
types.

e Cannot provide real-
time travel time
prediction.

e Low compatibility with
TRANSCOM data.

e Can only provide hourly
delay prediction.

2.1.7 Methodology for computing delay and user costs in work zones. Chitturi et al. (2008)

Chitturi et al. (33) proposed a step-by-step methodology to estimate capacity, queue length,
and delay at work zones. By applying with the lane width factor, heavy vehicle factor, and PCE
values from HCM, they estimated the adjusted capacity of the work zone.

Logistics of the model:
t—1

n; + Nitq
dtotar = dq + dspd = Z ( ) Vi * (_ - U_)
=0 0 lim
Niyr =N+ Vigq — Cad] * Nop
Where,
diotqr= total delay with work zone
d,= delay due to queueing
dspq= delay due to the slower speed
n;=number of vehicles in the queue at hour i
L=length of the work zone
V;=demand flow rate in hour i
Uy= operating speed
U,im= posted speed limit inside the work zone
Cqqj= adjusted work zone capacity
Ny, = number of lanes opened at the work zone

Data needs

Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, speed limit, vehicle
saturation headway.

Incident data: Impact duration.
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Operations data: None.

Time data: Time of day, day of week.
Location data: Length of work zone.
Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model, e Not provided.
operations use. may overestimate or
e Provides real-time delay underestimate traffic
estimation. delay.
e Provides both short- e Built for work zone
term and long-term delay only, additional
delay estimation. efforts may need for
adapting other incident
types.

e Cannot provide real-
time travel time
predictions.

e Low compatibility with
TRANSCOM data.

e Can only provide hourly
delay predictions.

2.1.8 Methodology to analyze queue length and delay in work zones. Ramezani and Benehokal.

(2011)

Ramezani and Benehokal (34) proposed that there may be more than one bottlenecks in a single
workspace and/or the transition area (within the single work zone). When the traffic flow rate
exceeds the transition area and work zone capacity, there will be active bottlenecks not only in
the workspace but also in the transition area. When the traffic flow rate is less than capacity,
there will be only one bottleneck throughout the work zone.

The model calculated the queueing delay by setting up multiple volume conditions among
demand, transition capacity, and workspace capacity. When estimating the queue length, the
model induced shockwave theory to calculate shockwave speed and arriving volume minute-by-
minute.

Data needs

Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, speed limit, vehicle
saturation headway.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week.
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Location data: Length of work zone.
Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Deterministic model, e Not provided.
operations use. may overestimate or
e Provides real-time delay underestimate traffic
estimations. delay.
e Provides both short- e Built for work zone
term and long-term delay only, additional
delay estimations. efforts may need for
e Provides 1-, 3-, 5-min adapting other incident
delay estimations. types.
e Cannot provide real-
time travel time
predictions.
e Low compatibility with
TRANSCOM data.

2.1.9 Theoretical approach to predicting traffic queues at short-term work zones on high-volume
roadways in urban areas. Ullman and Dudek. (2003)

The model is designed for estimating queue length of the short-term work zone on urban
highways. Ullman and Dudek (35) had a concern that the current models have an overestimation
of queue length due to the assumption of far apart on and off-ramp. Instead, drivers may choose
alternative routes to avoid work zone area if they can live in urban highways since the distance
between on and off-ramp is usually short. Therefore, they applied macroscopic fluid-flow theory
to estimate the queue length of work zones on urban highways.

Logistics of the model:

s o Do
Gsidze() = KiA =K TE Ax;

Where,

sige(1) = the flow permeating out the sides of the pipe through each segment (VPH)

Apl = the average traffic stream pressure differential between the roadway and the rest of the
corridor within Ax1

A = area through which flow is occurring

K = coefficient of permeability

TE = total energy of the traffic stream, and

i = energy gradient across the permeable medium
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Data needs

Traffic data: Traffic volume, roadway capacity, travel time, traffic speed, speed limit, vehicle
saturation headway.

Incident data: Impact duration.

Operations data: None.

Time data: Time of day, day of week.

Location data: Length of work zone.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Stochastic model. e Built for work zone e Not provided.
e Provides real-time delay delay only, additional
estimations. efforts may need for
e Provides both short- adapting other incident
term and long-term types.
delay estimations. e Cannot provide real-
time travel time
predictions.
e Low compatibility with
TRANSCOM data.

2.1.10 Summary of analytical models for traffic delay estimation/prediction

This section summarized available analytical methods for traffic delay estimation/prediction.
Both deterministic and stochastic models for work zone and other general non-recurrent
incidents were introduced. For deterministic models, one significant advantage is that they can
provide average traffic delay and queue lengths fast. However, all deterministic models suffer
from the problem of overestimation. Stochastic models can predict expected total delay and
variance of total delay. However, due to low compatibility of their data needs with
TRANSCOM'’s database, they may not be well suited to be used as part of TRANSCOM'’s
operators. Table 9 shows a summary of all analytical models of delay estimation/prediction that
are reviewed so far.

Table 9 Summary of analytical models of delay estimation/prediction
Analytical models for delay estimation
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TRANSCOM

Model - Highlights
Compatibility ghile
Khattak et al, Deterministic model, average delay, not
Low . .
2012 operations, overestimated
. Stochastic model, the variance of delay, not
Li et al, 2006 Low ) ; v
operations, reliable
. Work zone related, deterministic model, can
Cassidy and .
Medium only model one lane closure event, not
Han, 1993 . .
operations, overestimated
. . Work zone related, deterministic model,
Jiang, 1999 Medium . .
average delay, not operations, overestimated
Chien and .
Work zone related, deterministic model,
Schonfel, Low . .
2001 average delay, not operations, overestimated
. Work zone related, deterministic model, good
Jiang and
) Low for both long and short term work zone, not
Adeli,2003 . .
operations, overestimated
. . Work zone related, can use sensor data, good
Chitturi et al, .
2008 Medium for both long and short term work zone
impact assessment, reliable
Ramezani C
and Work zone related, deterministic model,
Low similar to Chitturi but was modeled with 5-
Benehokal, . .
min aggregated traffic data (volume)
2011
Ullman and Work zone related, stochastic model, shock-
Low . . .
Dudek, 2003 wave analysis, not operations, reliable

2.1.11 Traffic incident management decision support tools for planning purposes

In this section, we introduce several decision support tools that are used for work zone analysis
and mainly for planning purposes. These decision tools are developed using deterministic
models mentioned above.

QuickZone.

QuickZone (36) is the most used software packages for estimation of queue lengths and delays
in work zones. It is a work zone delay estimation program developed in Microsoft Excel. The
primary functions of QuickZone include quantification of corridor delay resulting from capacity
decreases in work zones, identification of delay impacts of alternative project phasing plans,
supporting tradeoff analyses between construction costs and delay costs, examination of
impacts of construction staging, by location along mainline, time of day (peak vs. off-peak) or
season, and assessment of travel demand measures and other delay mitigation strategies.
QuickZone can provide estimation/prediction of traffic delay and queue lengths.
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RILCA.

One drawback of QuickZone is that users need to input highly detailed traffic data to analyze
the impacts of long-term lane closures. This drawback can be addressed by RILCA (Rutgers
Interactive Lane Closure Application) (37), an interactive computer tool to plan lane closures for
work zones. It is a tool that was developed with the ArcView geographic information system
(GIS) software package as the main development environment. One of its features is that RILCA
gives users the flexibility to export the corresponding traffic volume from RILCA data to
QuickZone, if a detailed long-term lane closure analysis is required. It reduces the effort of
inputting detailed data into QuickZone for long-term work zone analysis.

Work Zone Coordination tool

Work Zone Coordination tool (38) is an online tool that can evaluate the feasibility and
effectiveness of coordinating short- and long-term work zones and to measure the benefits. It
integrates all scheduled and active construction projects, identifies conflicts between work
zone projects. It provides the estimation of traffic delay and queue length using deterministic
qgueuing model.

There are other decision support tools embedded with deterministic models, such as LCAP
(Lane Closure Analysis Program) (39) adopted by Maryland State Highway Administration.
There are also other work zone related studies (40) (26) that provide models to quantify the
traffic impacts of work zones or estimate the reduced capacity caused by work zones. For
example, Bian and Ozbay (41) proposed an artificial neural network model to estimate the
uncertainty of work zone capacity and provide its predicted distribution.

2.2 Data-driven methods for estimating/predicting impacts of non-recurrent traffic
events

Different from the analytical/statistical methods mentioned in the previous sections, this
section will provide data-driven approaches that provide traffic impacts of non-recurrent traffic
events by learning from the speed profiles with and without non-recurrent traffic events. Given
the availability of specific data from TRANSCOM, this type of models can be the most practical
ones for TRANSCOM'’s operations needs.

2.2.1 Estimating magnitude and duration of incident delays. Garib et al. (1997)

Garib et al. (6) proposed a multivariate regression model that is based on predictors such as the
number of lanes affected, the number of vehicles involved and the impact duration. They
proposed two models that best predicted the incident delay based on their available data:
Model 1:

Delay = —4.26 + 9.71X, X, + 0.5X; X5 + 0.003X,X, + 0.0006X2
Model 2:

Delay = —0.288 + 3.8X; X, + 0.51X,X; + 0.06X5 + 0.356X3

Where,
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Delay = cumulative incident delay

X1 = number of lanes affected by the incident

X, = number of vehicles involved in the incident

X5 = impact duration (the difference between the incident detection time and the incident
clearance time)

X, = traffic demand upstream of the incident in the last 15 minutes before the incident starting
time

Data needs

Traffic data: Traffic volume, reduced roadway capacity.

Incident data: Impact duration, number of vehicles involved, incident type, truck involvement.
Operations data: None.

Time data: Time when incident is detected, time when incident is cleared.

Location data: Occurrence within bottleneck, number of segments upstream of the incident,
number of lanes affected.

Weather data: Rain or dry.

Highlights

Advantages Disadvantages Model performance
e Requires low e Cannot provide real- e Prediction accuracy:
computation effort. time travel time 74%.
predictions.

2.2.2 Modelling the impact of traffic incidents on travel time reliability. Hojati et al. (2016)

Hojati et al. (42) proposed a method to quantify the impacts of traffic incidents on travel time
on freeways. They adopted historical data to establish recurrent speed profiles and identified
non-recurrent congestion based on their negative impacts on speeds. The locations and times
of incidents are used to identify incidents among non-recurrent congestion events.

They firstly defined the recurrent speed profile as a benchmark to quantify the impact of traffic
incidents. Therefore, the extra travel time due to traffic incidents is calculated for each time
interval as the difference between the recurrent speed profile and the daily speed profile.
The procedure can be described as follow:

1. Apply Quantum-Frequency Algorithm to identify recurrent speed profile (RSF;) and daily
speed profile (DSF,). The difference between RSF; moreover, DSF; highlighted the impact of
non-recurrent congestion events.

2. Non-recurrent events duration prediction.

3. Estimation of total travel time due to the non-recurrent event. The equation of getting
estimated travel time over affected links is:

J j
. L.
DTTtlk = Z dtt;(gm tim ) = Z #
m=1 m=1

Im.d,tim
Where,
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DTTtik = total travel time due to an event i on a set of affected links, in the time interval t, in
hours (h)

dtt;(gm, ti,,) = travel time due to an event i on link g, mth affected link, in the time interval
tiy, in hours (h)

DSng,d,m = speed on link g, mth affected link, day d, in the time interval t1,,

lg,, = link length of link g, mth affected link, (km)

t, = timeinterval of an event t; € {tg, ...t}

m = set of affected links of an eventm € {g4,..g;}

ti,, = time interval of jth affected link based on departing the event at the time interval t;,

te — [[Zor_ . dtt(gm-1, Tty )] X @], @ is an aggregated factor, the default value is 12

m=g;
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Figure 22 Schematic event identification in a typical day. Hojati et al. (42)
Data needs

Traffic data: Traffic volume, traffic speed.

Incident data: Impact duration, incident type.

Operations data: None.

Time data: Time when incident is detected, time when incident is cleared.
Location data: Link segment location, incident direction, segment length.
Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy to use. e Cannot make real-time e Not given.
e Provides travel time predictions, the travel
estimations. time can only be
predicted after the
clearance of incident.
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e Cannot provide a range
of predicted travel time.

e Cannot provide queue
length estimations.

2.2.3 A framework for travel time variability analysis using urban traffic incident data. Javid et

al. (2018)

This study (43) developed a framework to estimate travel time variability caused by traffic
incidents using integrated traffic, road geometry, incident, and weather data. They adopted a
two-year data in the California highway system to develop robust regression models. Their
models estimate highway clearance time, which shares the same definition of recovery time
defined in Section 1.7.1. Their models also estimate speed changes in percentages in both
upstream and downstream links of the incident bottleneck. Based on their proposed speed
change models, they estimated travel time variability due to non-recurrent incidents. Such
travel time variability can be regarded as one measurement to quantify the impact of non-
recurrent incidents.

Their methodology for speed change model is relatively easy, they employed a method called
Iteratively Reweighted Least Squares (IRLS) to implement robust regressions.

n
PirLs = arg minz wiriz(ﬁ)
B r-i=1
_ PG

2
T

w;

u 2
pw)y =41~ {1 B (4_685) } if lu| < 4.685
1 if |ul > 4.685
Where,

w;= weight for observation i
o = standard deviation of the residuals
p=loss function

The equations above will be iteratively implemented in a step-wise algorithm and stop until the
maximum changes in weights is less than 95%.

The regression function for predicting speed changes and highway clearance time is listed as
below:

Vi = Bx; + Xy + Xviv;
iL,j=1,..,n

The descriptions of variables in the model are shown in Table 10.

Table 10 Descriptions of variables in model.

Variable in the model Description
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Percent reduction in speed

Highway clearance time (min)

Incident clearance time (min)

Whether the incident occurred over the weekend or not (1 or 0)
Whether the incident occurred during peak hours or not (1 or 0)
Whether all lanes are engaged or not (1 or 0)

The highway has 12 ft width and 18 ft shoulders or not (1 or 0)
Interaction variable of y; and y;

N
[

~
=

NS
£

E——

L

Data needs

Traffic data: Traffic speed.

Incident data: Impact duration, incident type.

Operations data: None.

Time data: Time when incident is detected, time when incident is cleared, time of day, day of
week.

Location data: Link segment location, incident direction, segment length, segment width,
shoulder width.

Weather data: None.

Advantages Disadvantages Model performance
e Simple and easy for e Cannot provide queue e Low performance R%
operations use. length estimations. 0.33

2.2.4 Estimating freeway route travel time distributions with consideration to time-of-day,
inclement weather, and traffic incidents. Caceres et al. (2016)

This paper (44) developed a probabilistic model for estimating route travel time variability with
consideration of factors like time-of-day, inclement weather, and traffic incidents. They applied
Monte Carlo simulation to estimate the total travel time from origin to destination by creating
condition probability function for each link travel time.

Their diagram for modeling link and route travel time is shown below.
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(a) General model of single link

Time-of-day r

Length d;

' Weather w L4 . :
i i 4 \ Speed s; i
: | N et B Accident a; ;
i Link i | o j , Length d, i
i I g 2);, E
E 1\ TN J7 ;
; Speed s; R o :
! Accident a; 1 N :

(b) Example of route
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: = |
i p(SS | r, W) !

Figure 23 Diagram for modeling link and route travel time. (a) the general model of a single link.
(b). example of the route (44).

One significant shortcoming of this model is that all variables are defined in a discretized way.
Let T; represent travel time in link i, where T;: @ — R*.
S;i:Q - {5,15, 25, 35, 45,55, 65}
R: Q — {Peak, Off — Peak, Weekend}
W:Q — {Clear, Moderate, Rain, Snow}
A;: Q - {None, Accident}
Where,
S; =speed in link i
R = time-of-day
W = weather condition
A; = incident present in link i

They use probability mass function (pmf) to obtain the probability distribution for total travel
time of a route.

p(silS1, ey S, T, W) = Zpl(silai,sl, ey S T W) D2(a;|S1, ooy Sy 1Y W)

ai
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Estimating p; and p, directly from the data requires having observations for all levels of s; for
each combination of (a;, sy, ..., Sm, 7, W) and observations for all levels of a; for each
combination of (sy, ..., S;p, 7, W).

The dependency of all the pmf's needed to find the probability distribution of the speed of link
i is shown as below.

Conditional pmf for the speed of link ¢ Simplification To be obtained from data
PSSy, oy S 1y W) plslag sy, .. 81 W) plsiha;, r.w) plsila, r)

plsla, w)

plsila)

plsla;, s;,r.w) plsilag s, r)
plsila; s, w)
plsila, s;)

plsiag, r,w) plsla;, r)
plsjla, w)
plsja,)

plalsy. ....s,.r.w) plajr,w) plar)

plaiw)
pla;)

plsiha;, r.w) plsjlag r)
plsla; w)
plslay)

plsir, w) plsir)
pls;w)
pls)

4th level 3rd level 2nd level Ist level

Note that links je {1, ...,m} are downstream links of link i.

Figure 24 Variable indication of pmf derivations (44).

When constructing each pmf level by level (from level 1 to level 4), a recursive probability tree
is built to derive the conditional pmf for the speed of link i with the consideration of multiple
combinations of time-of-day, weather, and incidents.

Data needs

Traffic data: Traffic speed.

Incident data: Impact duration, incident type.

Operations data: None.

Time data: Time when incident is detected, time when incident is cleared.
Location data: Link segment location, incident direction, segment length.
Weather data: Clear, moderate, rain or snow.

Highlights

Advantages Disadvantages Model performance
e Simple and easy for e Cannot provide queue e Best KS difference:
operations use. length estimations. 0.175, p-value: 0.573.
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e Provides probabilistic e Only considered the
distribution of travel occurrence of the
time. incident, without taking
other incident

attributes.

2.2.5 Predicting the spatial impact of planned special events. Martino et al. (2019)

This study (45) proposed a model to quantify planned special events (PSE) such as concerts,
soccer games, and so on. They employed a K-Nearest Neighbor (KNN) classifier and Dynamic
Time Warp (DTW) to predict the spatial impact of PSE. By training traffic data of event and non-
event days for each road, using DTW, this model identified all road segments around a venue
that show a different traffic behavior on event days than non-event days.

Their approach of identifying road segments that are potentially affected by PSE is by
comparing events on different time-spans. They introduced the definition of Relative Timespan
of Interest and cited an approach to identify any non-recurring influencing factor perturbing the
flow on a specific date. The queue length can, therefore, be provided by adding up the total
numbers of affected road segments.

They applied a binary classification approach to identify the road segments affected by a PSE. In
order to search for correlations between Non-Recurring Traffic and the presence of an event,
they employed a binary classifier to discriminate road segments of the dataset into positive
(Non-Recurring Traffic) and negative (no abnormal traffic behavior) classes.

Data needs

Traffic data: Traffic speed.

Incident data: Impact duration, information about planned special events.
Operations data: None.

Time data: Planned special events schedules and time.

Location data: A description of the road network.

Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy to use. e Cannot provide travel e Best F-measure: 0.97.
e Provides queue length time predictions.
predictions. e Model-based on

planned special events,
additional efforts may
need for adapting to
other types of incidents.

2.2.6 Trdffic accident detection with spatiotemporal impact measurement. Yue et al. (2018)

This study (46) adopted Impact Interval Grouping (IIG) to capture the spatiotemporal impact of
traffic accidents to upstream locations. IIG compares real-time traffic speed with historical data
and generates impact intervals to determine the presence of accidents. They then take a
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multivariate time series classification approach to extract features to quantify the impact of
traffic accidents.

This study used a 2-norm multi-dimensional dynamic time warping (WD-DTW) as the baseline
model.

This study compared real-time speed with historical speed to quantify the incident impact. The
historical speed is calculated using the average speed at the same location and same time. The
unusual speed drop is modeled discretely by extracting impact intervals. Through such
discretization, they converted the complex time series into a concise formulation which is
easier to model as shown below.
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historical speed * (1-#p== impact timestamp —

|
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(a) Generate Impact Intervals (b) Impact Interval Groups
Figure 25 Impact intervals and impact interval groups of an incident (46).

|x(£)-x(0)]
T > 0. Here x(t)

denotes the real-time speed at time t, and X(t) denotes the historical average speed of the
same sensor, at time t. @ is a tuning parameter determining how strict the impact is measured.
The IIG procedure includes three steps, 1) Discretization, 2) Smoothing, 3) Grouping. With the
implementation of 1IG, three features will be extracted and calculated to capture the impact of
traffic incidents.

Dropping severity A: the drops in traffic speed. Given a multivariate time series, X =

{x1, x5, ... .}, the historical speed is denoted as X = {¥X;, X5, ..., X; }. The dropping severity is
measured as:

The definition of impact interval is a tuple (t5, t.), ts < t < t,,

Amax = IIL.I%X(]. — X (1) /% (1))

Aavg = avgi,k(l - xk(i)/fk(i))
Lasting severity T: after an accident happens, the drop in speed will last for a certain time. This
term is defined similarly as impact duration. Impact interval is used to measure lasting severity
because the discretization provides an easy extraction of temporal patterns. A list of impact
intervals I, is generated. |x; | denotes the length of time series xj,. The lasting severity is
measured as:

Tmax = Hil’%X(Ik(i)[l] — L, (D [0]) /x|
Tavg = avgk(miax(lk(i) [1] = I (D [0]) /x|
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Distant severity o: an accident will affect a certain distance in the upstream traffic. This term
can be used as the queue length of an incident. The distant severity is measured based on the
existence of impact intervals. dj, denotes the distance of the sensor s,.
Ocons = di/dk
k =arg ml?lx{l1 to I, # @}

Oaisc = di/dg
k =arg ml?x{lk * 0}

Data needs

Traffic data: Traffic speed.

Incident data: Impact duration, incident type.

Operations data: None.

Time data: Time when incident is detected, time when incident is cleared.
Location data: Link segment location, incident direction, segment length.
Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Simple and easy to use. e Cannot provide travel e Not given.
e Detects traffic time predictions.
accidents. e Cannot provide queue
length estimations.

2.2.7 Utilizing real-world transportation data for accurate traffic prediction. Pan et al. (2012)

Pan et al. (47) adopted an enhanced ARIMA (auto-regressive integrated moving average) to
predict traffic. They proposed a method to predict traffic by incorporating historical and real-
time data into time-series mining technique. The first method used H-ARIMA approach, which
utilizes both historical traffic patterns and current traffic speed for traffic prediction under
normal conditions and the presence of traffic incidents.

The method is a hybrid forecasting model named Historical ARIMA (H-ARIMA) that selects in
real-time between ARIMA or HAM (Historical Average Model) based on their accuracy.

ARIMA: this model is a generalization of the autoregressive moving average model with an
initial differencing step applied to remove the non-stationary of the data. The model is
formulated as:
p q

Yer1 = Zi_laiyt—Hl + i_lﬁiet—iﬂ + €41
Where {Y;} refers to time-series data (e.g., the sequence of speed readings). In the
autoregressive component of this model (Zf=1 a;Yi_iy+1), alinear weighted combination of
previous data is calculated, where p refers to the order of this model and «; refers to the
weight of (¢ — i + 1)-th reading. In the second part (Z?=1ﬂiet_i+1), the sum of weighted noise
from the moving average model is calculated, where € denotes the noise, g refers to its order
and f; represents the weight of (t — i + 1)-th noise.
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Historical Average Model (HAM): they introduced HAM that uses the average of previous
speed readings for the same time and location to forecast the future data. The HAM is
formulated as:

1
taw +h =—Z
v(taw +h) [V (d,w)]| sEV(d,W)V(S)

Where V (d, w) refers to the subset of past observations that happened at the same time d on
the same day w. Specifically, d captures the daily effects (i.e., the traffic observations at the
same time of the day are correlated), while w captures the weekly effects (i.e., the traffic
observations at the same day of the week are correlated). h refers to the prediction horizon
(the time step in the future).

They proposed a decision-tree model that selects between ARIMA and HAM whichever reports
a lower prediction error to forecast the speed at individual time stamps. In this model, the
decision parameter and threshold are denoted as A and ¢. The detailed approach is shown in
Figure 26.

Algorithm 1 Get Ad({v(j)}, d, w)
Output: A
: Let S = {V({v())},d, w)}

1
2: Let Errarmma = 0; Errgay =0
3: Initialize ARIMA model with training dataset {v(j)}
4: vyam= Average(V{d,w});
5: for all v; € S do
6: Uarima = ARIMA();
7:  Errarmma = Errarma+ RMSE(v;, variva);
8: .E}'f'”_.\j\j = Iff'f'”_.\“'i' RNIS]_;,Hr UHAM):
9: end for
10: A = Erragpma / (Errariva+Errgam)
: Retum A.

Figure 26 Algorithm of hybrid ARIMA and HAM (47).

Data needs

Traffic data: Traffic speed or travel time.

Incident data: Incident type.

Operations data: None.

Time data: Time of day, day of week, time when incident is detected.
Location data: Incident direction, incident location, number of affected lanes.
Weather data: None.

Highlights
Advantages Disadvantages Model performance
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e Simple and easy for e Cannot provide queue e Best MAPE: 80%

operations use. length estimations. (Incident condition).
e Provides real-time e Cannot provide a range
travel time predictions. of predicted travel time.

e (Can be extended to
predict travel time with
the presence of
incidents.

2.2.8 Analysis and prediction of the queue length for non-recurring road incidents. Ghosh et al.

(2017)

Ghosh et al. (3) combined incident records with traffic speed data from the expressways of
Singapore to compute the queue length. They proposed a hybrid classification-regression
model to predict the queue length of the incidents in real-time. Their model contains multiple
stages. The first stage of the model is binary classifier. The second stage is activated if the
qgueue length of an incident is predicted to be higher than a predetermined threshold value.
The model will perform a regression analysis to predict the queue length of incidents for fine-
tuning. The third stage of the model will evaluate the performance of different classification
and regression methods based on accuracy.

Their definition of queue length is the spread of upstream congestion links from the incident
location. For the prediction of the queue length, they employed three methods, classification
and regression tree (CART), support vector machine (SVM) and Treebagger. The procedure of
their queue length prediction model is shown below.
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Data

Choose optimum threshold a from
training data

Predict Queue-

length
(Classification)

Predict the queue-length using
regression model

Figure 27 Flowchart of queue length prediction model (3).

Data needs

Traffic data: Traffic speed.

Incident data: Incident type, impact duration.

Operations data: None.

Time data: Time of the incident.

Location data: Incident direction, segment length, condition of the shoulder, total number of
lanes, number of lanes affected, type of affected lanes (1%, 2" or 3", from extreme right).
Weather data: None.

Advantages Disadvantages Model performance
e Simple and easy for e Cannot provide travel e Best MAPE: 25%
operations use. time predictions. (Incident condition).

e Provides real-time
queue length
predictions.
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2.2.9 Real-time travel time prediction using particle filtering with a non-explicit state-transition
model. Chen and Rakha (2014)

This paper (48) presents a methodology for a short to medium-term travel time prediction
which is based on the real-time and historical traffic data collected. They proposed a new
algorithm based on particle filter algorithm which selects particles from a historical database
and propagates particles using historical data sequences as opposed to using a state-transition
model. This particle method does not require an underlying physical model in order to model
the state transition function but rather only depends on historical travel time trends. They
apply a partial resampling method to address the degeneracy problem by replacing invalid or
low weighted particles with historical data that provide similar data sequences to real-time
traffic measurements.

For test cases and evaluation, they applied INRIX probe data to learn historical and real-time
travel time trends. Their model shows an increased performance when compared to KNN and
Kalman filters. The prediction horizon of their model is as far as 60 minutes (10 minutes time
intervals).

Measured Instantaneous Travel Time on Test Day Experienced Travel Time on next time interval
4 % on test da
. z on test day pzlz) . Ly
e g
. P Xp1 Wi=p(z™)
El z 101, W =Pz A
& % efzeve')
= ]
a e LM
ié : i - Lé‘ I _
t-1 t  Time of Day t+l Time of Day
l Measurement update: 2 T Prediction update: %y
/" Selected Particles from Historical Dataset N
| i
| f y on day d" I f x on day 45D :
| 1 y on day 4" | T x on day 40P :
] y L0 :
" y on day d, N g x on day d, ik (i i
E y=hix) | £ ﬁlﬂ X1 %) :
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Figure 28 Demonstration of the proposed particle filter approach (48).

For their methodology, they used a graphical representation in Figure 28 to show their
proposed approach: non-explicit state-transition particle filter (NSPF). The input data are the
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measured instantaneous travel times for each time interval, the update of measurement data
from z,_4 to z; is conducted by shifting the data sequence window one-time step forward. Each
particle can be recognized as a data sequence of instantaneous travel times and a data
sequence of experienced travel times on the same historical day. The time update of the
particle filter from x,f:_l to xti is accomplished by shifting one step ahead along the data
sequence of experienced travel time. For each particle, the corresponding traffic pattern y,f can
be derived according to the relationship with x} represented by y, = h,(x;). At the same time,
the associated weight w can be calculated as the likelihood p(z;|x}), which can be
accomplished by comparing the dissimilarity between real-time and historical traffic pattern as
De, (2t — y}). The likelihood function is normal distribution N (0,1). The distribution of

. AN
experienced travel time on the next time interval t + 1 can be predicted as {xéﬂ, wf}i_l. For
i SN
multi-step prediction with prediction horizon t + p, the predicted travel time is{xéﬂ,, Wt‘}i_l.
The proposed algorithm is shown in Figure 29.

- L

{5}, | = NSPF[{x;' Vo2

Initialize particles x; : {xy 1y = Qenp(dly’ ), [1:N]} _

dy’ — randomly select a day from[1.2, ... .D..jé,'" randomly select a time index at day dj).i € [1: N|
Step 1: Time update ) )

Propagate the particles by drawing x; ~ p(x;’ [x;" )

d —d i i1 + 10 [1:N]

Identify valid particles with respect to prediction horizon p

Wy = {ili’ < Hg — p.ic[1:N])
Step 2: Measurement update

wy o pzefx”) = pe, (20 - ") i € W
Select Nth number of particles with least weight values
For j=1: Nth ) i
= x w = wi”, wheni = argmax;g, Wy, W = W — {i}

End For
Step 3: Resampling
Forj—Nth+1:N
Calculate the probability of selecting each historical day 4}
it = Pe, (2t — Qunge(n, aF)), when o — arg mingy py, 5 (20 — Qinee(n k))on € [1: D)
d;" — randomly select a day from(1, 2, ..., D] according to the probability 4.3, ..., !
K = Qo (d 6 ) Wi =
End For
Step 4: Prediction
Draw x;!, ~ plx. gl )i € [1:N|

N L L

.
Reip = imWp -Xpp / 2w

Figure 29 Multi-step travel time prediction by NSPF (48).

Data needs

Traffic data: Travel time.

Incident data: None.

Operations data: None.

Time data: Time of day, day of week.

Location data: Segment location, segment length.
Weather data: None.
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Highlights

Advantages Disadvantages Model performance

e Simple and easy for e Cannot provide queue e Best MAPE: 7.32%.

operations use. length predictions.
e Provides real-time e No test cases for non-

travel time predictions. recurrent incidents,
e Provides a range of additional efforts may

predicted travel time. be needed for non-
e Fast computation time. recurrent incident

cases.

2.2.10 Deep learning: a generic approach for extreme condition traffic forecasting. Rose Yu, et

al. (2017)

This study (2) provides a deep learning method to predict traffic speed under non-recurrent
congestion conditions. They propose two methods for peak-hour speed prediction and non-
recurrent congestion prediction. They apply a deep long short term memory (LSTM) for peak
hour traffic speed prediction. They further improve the model to predict traffic speed under
non-recurrent congestion conditions through a mixture deep LSTM model. Their model is
tested using traffic dataset in Los Angeles.
They mainly adopt LSTM model for peak-hour prediction and post-accident prediction. LSTM is
a special type of Recurrent neural network (RNN). RNN is a feature map that contains at least
one feedback loop. Denote the input vector at timestamp t as x;, the hidden layer vector as h;,
the weight matrices as W), and Uj,, and the bias term as bj,. The output sequence o; is a
function over the current hidden state. RNN iteratively computes the hidden layer and outputs
using the following recursive procedure:

he = o (Wpxy + Uphe_1 + by)

And

o = o(Wohe + b,)
Where W, and b, represent the weight and bias for the output respectively.
LSTM is a special type of RNN since it replaces the summation unit in RNN with memory cell
state which contains gates to protect and control the cell state. In this way, LSTM avoids
vanishing gradient issues and is able to model the long-term sequence problem.

Data needs

Traffic data: Traffic speed.

Incident data: Incident type.

Operations data: None.

Time data: Time of day, day of week.

Location data: Segment location, segment length, incident direction.
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Weather data: None.

Highlights

Advantages Disadvantages Model performance
e Provides accurate travel e Cannot provide queue e Best MAPE: 0.97%.
time prediction. length predictions.
e Designed specifically to e Cannot provide a range
predict traffic speed of predicted travel time.
with/without non- e Requires heavy
recurrent incidents. computation efforts.

2.2.11 Summary of data-driven models for traffic delay estimation

In summary, with the investigation of available data-driven models for travel time and queue
length prediction, we found that there are not any available models which can provide both
travel time and queue length prediction with the presence of non-recurrent incidents. A future
effort could determine if a model exists that would combine prediction models for impact
duration, traffic delay, and queue length to satisfy the main objective of this project.

Table 11 Summary of data-driven models of delay estimation/prediction.
Data-driven models for delay estimation/prediction

Model TRANSCOM Highlights
data
compatibility
Garib et al, Low Statistical regression, operations, not reliable
1997
Hojati et al, High Able to provide travel time increase, cannot
2016 be used for prediction purpose, operations,
reliable
Javid et al, High Travel time prediction, statistical regression,
2018 operations, not reliable
Caceres et High Travel time prediction, able to provide travel
al, 2016 time distribution, can provide link and route

travel time. Modeled with discretized data
interval, operations.

Martino et High Queue length prediction, machine learning
al, 2019 model, designed for planned special events,
reliable
Yue et al, High Queue length identification, machine learning
2018 model, designed for incident detection
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purpose, not able to predict queue length,
reliable
Pan et al, High Travel time prediction, time-series method,
2012 real-time, operations, reliable
Ghosh et al, High Queue length prediction, machine learning
2017 model, real-time, operations, reliable
Chen and High Travel time prediction, provide a range of
Rakha, 2014 predicted travel time, operations, reliable
Yu et al, High Travel time prediction, deep learning model,
2017 high accuracy, reliable

2.3 Data needs from reviewed models and their compatibility with TRANSCOM data

Below we provide a summary of data needs based on all the incident delay
estimation/prediction models reviewed versus available data from TRANSCOM. It is important
to note that every model does not need all the data shown in Table 12. The team will make its
final predictive model selection recommendation for the short-run based on the currently
available data in addition model’s predictive capabilities and accuracy. Moreover, if a model is
deemed promising but not recommended due to the immediate unavailability of data from
TRANSCOM then it will be identified as a candidate model that can be tested in the mid-term
contingent upon the availability of required data in the near future.

Table 12 Data compatibility with TRANSCOM for traffic delay estimation/prediction

TRANSCOM
Incident type °
attributes Impact duration °
Traffic Real-time traffic volume Not currently
attributes available.
Traffic speed before, during and after traffic incidents °
Startup/end lost time °
Acceleration rate °
Geometry Number of lanes affected °
Incident direction °
Length of incident
Roadway capacity °
Number of vehicles involved
attributes Number of trucks involved
m Rain/snow/sunny °

Visibility Dark/bright

83



3. Data analysis towards estimating selected operations models

TRANSCOM provided the research team with three types of data from 2015 to 2018 in the ICM-
495 corridor (Figure 1), which included highway events, highway trip, and HPMS volume data.
There are 7 types of data files in highway events data, 2 types of files in highway trip data and 1
type of file in HPMS volume data. Table 13 shows the description of collected datasets from
TRANSCOM.

Table 13. Description of data obtained from TRANSCOM.

Details Years Export
Type
Highway Incidents 2015, 2016, 2017, 2018 Csv
Events Construction 2015, 2016, 2017, 2018 Csv
Special Event 2015, 2016, 2017, 2018 CSsv
Facility - Event Type Mapping CSsv
Incident Type - Event Category CSsv
Mapping
Event - link ID mapping 2015, 2016, 2017, 2018 Csv
Event Actions 2015, 2016, 2017, 2018 Csv

GIEQVWYEVARE Link travel time every 2 minutes
11 [JDEIERS by day of week for following

1. Monthly 2015, 2016, 2017, 2018 Csv

2. Quarterly 2015, 2016, 2017, 2018 Csv

3. Yearly 2015, 2016, 2017, 2018 Csv
Link Definition including no. of Csv
lanes details
Link shapefile ESRI

Shapefile

Holiday Calendar 2015, 2016, 2017, 2018 Csv

HPMS AADT by link IDs 2017 Csv
Volume Hourly distribution factor Csv

3.1 Highway events

Highway events dataset includes seven types of data files: Highway Events-Incidents, Highway
Events-Construction, Highway Events-Special Events, Facility-Event Type Mapping, Incident
Type-Event Category Mapping, Event-Link ID Mapping, Event Actions.
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Highway Events-Incidents, Construction, Special Events

These files include 21,277 individual records of non-recurrent traffic events (5,265 incidents,
14,778 construction activities, and 1,234 special events) that occurred from 2015 to 2018, as
shown in Figure 30. A total of 67 columns are included in each of these data files, including
details of non-recurrent traffic events such as event type, start/end date time, direction of the
event and so on. The purpose of this study is to provide traffic impact duration and
delay/queue length predictions. After a detailed literature search and review, we selected the
attributes that we thought would be useful for operation duration and impact model calibration
and validation. Table 14 shows a description of these 20 selected attributes. The description of
the entire 67 attributes is provided in Table 38 in Appendix.

m Incidents = Construction = Special events

Figure 30. Type and percentage of events that occurred from 2015 to 2018.

Table 14. Description of selected data fields from highway events data files.

Field Name Description Format Missin Example
g Rate
Id Unique identifier of event  String 0.02% ORI171242207
eventstatus Status of an event Integer 0.02% Closed
List of values

0 - New

1 - Updated

2 - Closed

255 - Scheduled

85



StartDateTime

EndDateTime

LastUpdate
Organization_ShortNa
me

eventType
LanesTotalCount

LanesAffectedCount

LanesDetail

LanesStatus

Facility

Direction
City

County

State

PointDatum

PointLAT
PointLON

xcm_WeatherConditio
n

N =
N N ~N

Start date - time of event

End date - time of event

Last updated date-time of
an event

Reporting organization
Name

Contains event type of
current event

Total lanes of roadway

Lanes affected by this
event

Contains lane affected
detail. Example, all lanes
at least one lane closed
for repairs

Contains lane status
Example, open close tra
ffic disruption

Event location facility
name

Contains Event direction

City name based on Event

County name based on
Event
State abbreviation of
Event
Example,

NJ — New Jersey

PA — Pennsylvania
Any reference point/co-
ordinates from which
measurement may be
taken. Here the default
Point Datum is
NAD83(North American
1983 Datum)
Latitude of an event

Longitude of an event

Weather condition during
event
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Datetime
Datetime
Datetime
String
String
Integer
Integer

String

String

String

String
String

String

String

Float

Float
Float
String

0.02%

0.03%

0.02%

0.02%

0.02%

99.29
%
95.15
%
45.29
%

45.59
%

0.02%

6.38%

12.48
%
0.64%

0.02%

0.02%

0.02%
0.02%

99.98
%

12/25/17 1:39:00

AM

1/1/18 1:54:21 AM

12/25/17 1:39:40

AM

MTA Bridges &

Tunnels

Disabled vehicle

4
2
right lane
blocked
1-495
westbound
New York
Queens
NY
NADS3
40.73690033
-73.9312973
sunny



The data type and the percentage of missing values are obtained after conducting a complete
process of raw data analysis and quality check of the provided files. In Table 14, it can be seen
that most of the selected attributes report missing values less than 10%. However, attributes
such as “LanesTotalCount”, “LanesAffectedCount” have more than 90% missing values.
Furthermore, “LanesDetail” and “LanesStatus” are found to have 45% missing values.

Facility-Event Type Mapping

This file provides all highway facility names in the ICM-495 corridor that had non-recurrent
traffic incidents from 2015 to 2018. Each event type is referenced with a single facility ID and
facility name. Table 15 shows the field names with descriptions, data types and percentages of
missing values. There are no reported missing values in this file.

Table 15. Facilities mapped into various event types.
Sr.No. Field Name Description Format Missing Example

Rate

EventTypelD An ID referencing an Integer 0% 1
IncidentType object, which
describes the type of incident
(e.g. accident, delay).

- EventType A string representing the type(s)  String 0% Construction

of event (e.g. "Accident, Delays").
FacilitylD Event location facility ID Integer 0% 109

Facility Event location facility name String 0% 1-495

Incident Type-Event Cateqgory Mapping

This file categorizes 141 event types into 5 distinct categories: congestion, construction,
incident, special event and weather. For example, traffic events such as overhead sign repair,
bridge rehabilitation and barrier repairs are categorized as “construction activities”. Traffic
events such as disabled truck, accident and overturned tractor and trailer are categorized as
“incidents”. Events like concert, parade and hockey game are categorized as “special events”.
Events like downed tree and flooding are categorized as “severe weather events”. Table 16
shows the field names of this file with description, data type and percentage of missing values.
There are no missing values reported in this file.

Table 16. Traffic event type mapped into 5 categories.
Sr. No. Field Name Description Format Missing Example

Rate

EventTypelD An ID referencing an IncidentType Integer
object, which describes the type
of incident (e.g. accident, delay).
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EventType A string representing the type(s) String 0% paving
of event (e.g. "Accident, Delays"). operations
CategoryName Event Category String 0% Construction
Example :

Congestion
Construction

Event-Link ID Mapping

This file mapped each individual traffic event using a link ID of the location where the event has
actually occurred. Using the link ID and provided coordinates, we are thus able to locate a
specific traffic event in the ICM-495 corridor. With the help of the provided shapefile, we can
find the upstream and downstream links of the target link where the event takes place. Table
17 shows the field names of this file with description, data type and percentage of missing
values. There are no missing values found in this file.

Table 17. Individual traffic event mapped using a unique link ID.
Sr. No. Field Name Description Format Missing Example

Rate

- TripMasterld Unique ID of Trip Integer 0% 3440
_ Eventld Unique identifier of event  Integer 0% ORC14662711

n Linkld Native Link ID Integer 0% 119959579
Event Actions

This file includes the operations actions for each individual traffic event from 2015 to 2018 by
corresponding organization. Actions such as event opened, event updated and event closed are
described in each traffic event record. The field name “Typeld” refers to a list of action types
provided by TRANSCOM, which is shown in Table 39 in the Appendix. Table 18 shows the field
names of this file with description, data type and percentage of missing values. There are no
missing values reported in this file.

Table 18. Event actions for each individual traffic event.

Sr. No. Field Name Description Format Missing Example
Rate
EventID An ID referencing the event  String 0% ORI171242207

to which event this action
corresponds to. This should
be used in conjunction with
the "eventClass" field to
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determine the correct
event.

EventClass Suggest a class of an Integer 0% 1
event. Refer to the "Event
Class" excel sheet tab.

OccureAtTime Represents date and time Datetime 0% 1/1/18 1:52
when this action was
created

Description Represents description of String 0% Closed via client action
the action

Typeld An integer representing the  Integer 0% 32

type of action.

Organizationld An ID referencing the Integer 0% 1104
Organization that created
this action. Refer to the
"Org Name" excel sheet tab.

3.2 Highway trips

Highway trip data includes two types of data files: Link travel time and Link shapefile.

Link travel time

This file provides travel time data from 2015 to 2018 for each individual link in the ICM-495
corridor mapped with a unique link ID. The travel time data is provided every two-minute
interval and aggregated by month, quarter and year. TRANSCOM also provides this real-time
travel time in seconds. In this project, we will mainly use real-time link travel time data to
calibrate and validate our recommended models.

This file maps link ID with link travel time. This link ID is also referenced in file “Event-Link ID
Mapping” and Link shapefile. Therefore, we are able to obtain the link travel time before,
during and after a specific traffic event. The link travel time for downstream and upstream of
the link where the traffic event occurs are obtained after conducting a whole process of data
analysis.

Table 19. Link travel time mapped using a unique link ID.

Details Field Name Description Format Missing
Rate
Link travel time linkid Unique Identifier for each link in ICM- Integer 0%
every 2 minutes 495
by day of week hhmm Hour : Minute Datetime 0%
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for following dayOavgtt Average TravelTime of all sunday of Integer 0%

a. Monthly month/quarter/year in seconds

b. Quarterly daylavgtt Average TravelTime of all monday of Integer 0%
c. Yearly month/quarter/year in seconds

d. Real-time (not WeE\PE 443 Average TravelTime of all tuesday of Integer 0%
averaged) month/quarter/year in seconds

day3avgtt Average TravelTime of all wednesday of  Integer 0%
month/quarter/year in seconds

day4avgtt Average TravelTime of all thursday of Integer 0%
month/quarter/year in seconds

day5avgtt Average TravelTime of all friday of Integer 0%
month/quarter/year in seconds

day6avgtt Average TravelTime of all saturday of Integer 0%

month/quarter/year in seconds

Real-time_tt Real-time travel time of all 2-minute Integer 0%
intervals in seconds

Link shapefile

This file provides an ESRI shapefile that uses NAD83 coordinate system. This file provides a map
of all links in the ICM-495 corridor in both directions. The attribute table of this shapefile
includes details such as number of lanes, length of links and direction of the link. In the files
“Highway Events-Incidents/Construction/Special Events”, there are a lot of missing values
(99.29%) in the field total number of lanes. This information is provided in the link shapefile.
Table 20 shows detailed information that is provided in the link shapefile.

Table 20. Attribute table in the link shapefile.
Field Name Description

link_id Refers to link ID that maps with TMC
functionclass The function class of specific link

highway_nm The highway name where specific link belongs

length The length of link in meters

postedspeedinmph The posted speed of link in mph

direction The facing direction of the link, i.e. North, East, South, West, North
East, North West, South West and South East

state The state where link belongs

county The county where link belongs

ramp Ramps are connectors that provide access between roads that do
not cross at grade.
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route_type The route type indicates that the road’s name is actually a route
number and in many

countries is displayed in a shield symbol (i.e. Interstate and State
routes in the U.S.).

This attribute identifies a link for which a fee must be paid to use the
road.

roundabout A roundabout is a contiguous loop with consistent one-way traffic
throughout the circle
that controls the traffic flow from converging roads.

bridge Bridge is a structure that allows a road, railroad, or walkway to pass
over another road,
railroad, water feature, or valley.

Tunnel is a covered passageway through or under an obstruction.

phys_lanes Physical Number of Lanes indicates the total number of all lanes on a
link across all travel
directions.

3.3 HPMS volume data

HPMS volume data includes AADT by link IDs and corresponding hourly distribution factors. We
can convert AADT for each link to hourly traffic volume by each link using an hourly distribution
factor. Table 21 shows a description of HPMS volume data.

Table 21. Description of HPMS volume data.

DETETTS Field Name Description
AADT by link IDs link_id Unique ID of an link
aadt Annual Average Daily Traffic
aadt_singl  Annual Average Daily Traffic for single-unit trucks and
buses

aadt_comb Annual Average Daily Traffic for Combination Trucks
i

Hourly distribution VPROFILE Profilename

factor hour value 0 to 23

pct_hrly Hourly distributed percentage
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4. Comparison of reviewed models and recommendations

After a detailed review of the open literature, it was not possible to identify non-recurrent
delay prediction models that are currently used by operations staff at a TMC as part of their
real-time incident management operations. It is important to note that there might be
operational models that are embedded in the proprietary software used by some TMCs, but
such implementations are not generally published in the open literature. Thus, it is not possible
to identify these as part of a literature review such as the one conducted in this project. One
alternative way to get this type of additional information is to conduct a nation-wide interview
of all the major TMCs. However, this can be very time-consuming and expensive effort which is
definitely beyond the scope of this limited study. Finally, any predictive model should be able to
work with TRANSCOM data for it to be appropriate for deployment by TRANSCOM and this
requirement further limits the possibility of using off-the-shelf existing predictive models. For
example, many existing models require real-time traffic volume as one of the critical inputs; the
lack of traffic volume data in TRANSCOM data limits the use of many existing models.

In this section, based on our comprehensive review of the literature presented in the previous
sections, we recommend one model for each type of prediction task namely, impact duration
prediction, traffic delay prediction/estimation, and queue length prediction. We first
summarize the feedback obtained from the interviewed stakeholders. Based on this feedback,
we propose several performance measures to compare and evaluate reviewed prediction
models. This section is concluded by comparing the data needs of recommended models with
TRANSCOM data.

Based on the scope of work in this project, we identified that both travel time prediction and
impact duration prediction can and should be done at the operations level. After interviewing
TRANSCOM stakeholders, we compiled their responses and created a checklist of model
requirements as shown in Table 22.

4.1 Ideal model vs. existing models

An ideal model should contain two components: the impact duration module, and travel time
and queue length prediction module. The ideal model should be able to provide a prediction of
these two components at the same time. Moreover, the ideal model should satisfy all of the
requirements raised by the scope of work and stakeholders in our interviews, which are shown
in Table 22.

For the impact duration prediction module, an ideal model should satisfy only 4 points shown in
the checklist, namely: (1), (4), (6), (8) and (10).

For traffic delay and queue length prediction module, an ideal model should satisfy 8 points
shown in the checklist: (1), (2), (3), (4), (5), (7), (8), (9) and (10).
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Table 22 Checklist based on the scope of work (SOW) and interview feedbacks

Number Requirements from SOW and interviews Ideal Possible

@ Both travel time prediction and impact duration J J
prediction should be done at an operations level.
Provide travel time prediction at least for the
impacted zone, then expand to a corridor, and/or v \
alternative corridors with further effort.
Provide travel time prediction and parameters by N
vehicle type and by lane.
Should work with the current TRANSCOM dataset. v
Provide travel time prediction with consideration N N
of roadway closures.
Provide duration prediction for incidents that last
more than 30 minutes. The model should also be N N
able to predict incidents within 30 minutes,
especially at peak hour/high demand routes.
Provide a range of predicted travel times instead
of a single value. This predicted travel time should
be updated every 5 minutes. It is better to also \ \
provide the distribution of predicted travel times
with corresponding confidence levels.
The accuracy of the predicted travel time/impact
duration within +/- 10% error. Stakeholders agree J N
to sacrifice accuracy to get a longer prediction
time window.

© ©O®» © ©

Q

@ Provide real-time prediction of the queue length. \ v
Can disseminate different levels of prediction
information to different levels of agencies, \ \

stakeholder, decision-makers, and partners.

However, after a careful investigation of the literature, we find that a single model cannot
address all of the above points included in the checklist at the same time. However, by
combining several candidate approaches, one can manage to cover 9 out of 10 points in the
checklist. Besides, there are no operations models reported in the literature that can predict
travel time by vehicle type and by individual lane to the best of our knowledge. TRANSCOM
data, as of its current version, does not have lane-based or vehicle-type-based travel time.
Therefore, it is not possible to meet the third requirement with existing data sources and
prediction models available in the literature.

We then compared reviewed models using the checklist in Table 22, and four other

performance measures explained in the following section. After a detailed comparison, we
recommend the most appropriate models for the prediction of impact duration, travel and
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gueue length in the presence of a non-recurrent event, given the availability of both historical
and real-time TRANSCOM data.

4.2 Model comparison

Based on the scope of work of this project and the feedback from the stakeholder meetings, we
developed four performance measures to further evaluate reviewed models.

4.2.1 Operations versus planning

One of the significant needs identified from user feedbacks is the requirement for the
recommended model(s) to be for “operations” use only. An operations model should be able to
provide predictions based on the limited information that becomes available during real-time
incident management operations. The recommended model should be able to work in real-time
and provide on-line predictions. For impact duration prediction, it should be able to use time-
sequential data and provide updated predicted duration with new information becoming
available as the incident management operations progress. However, many studies in the
literature propose “one-time” models which can only be used mostly for planning purposes.
These models can only work with historical data and provide impact duration prediction with
complete data that can only be available after the full clearance of an incident. In summary, the
first performance function in terms of recommending a model in this study is that it should be a
model specifically suited for real-time “operations”.

4.2.2 Prediction of a single value versus a range of values

Most stakeholders interviewed in the first task of this study mentioned a need for a range of
predicted travel times rather than a single value. Non-recurrent congestion can cause
significant interruptions to regular traffic patterns. Travel times in the presence of such non-
recurrent congestion can thus fluctuate due to the stochasticity and possible modeling errors
on a case by case basis. The probabilistic distribution of predictions can capture such
randomness and uncertainties in a way a single point estimate cannot. This travel time
prediction approach can also help agencies in the decision-making process by providing them
with a range of values including, minimum, maximum, and average travel times. In fact, during
the agency interviews, the team found out that many agencies prefer to disseminate different
levels of predicted information (an upper and lower bound or an average expected travel time)
within their agency, to their stakeholders and travelers depending upon such factors as their
confidence in the model predictions and severity of the non-recurrent event. Thus, the second
performance measure is that the recommended model should be able “to generate a range of
predicted values rather than a single value to give the agencies flexibility in interpreting and
disseminating results.”

4.2.3 Analytical versus data-driven

Based on the findings of the extensive literature review, it is apparent that most of the non-
recurrent delay models are analytical models. These analytical models include queuing-based
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delay models or shock-wave based models. One common shortcoming of these models is that
they cannot provide predictions with missing data/parameters. Moreover, analytical models
cannot generally work in real-time due to extensive data input and model output analysis
requirements that are not suitable for real-time operations. More importantly, all of these
models require actual volumes and reduced capacities in order to predict delays. However,
TRANSCOM currently does not acquire real-time volume data from most of its agencies and lack
of real-time volume (demand) data makes all of these analytical models infeasible for
operations use at this time. On the other hand, data-driven models can learn traffic patterns
such as speed-profiles without knowing the details of non-recurrent traffic events as well as
current traffic demand. The third performance measure is that the recommended predictive
model should be “data-driven and should be able to be trained using currently available
TRANSCOM data only.”

4.2.4 Compatibility with TRANSCOM data

During the process of managing incidents in real-time, it is common that operators need to
make decisions based on limited information. For impact duration prediction models, many of
the reviewed models require data that is not currently available from TRANSCOM in real-time
although some of it may become available after the incident is cleared. For example, most
Classification Tree Method (CTM) models require operations data as key inputs, which is not
provided in the TRANSCOM dataset. Therefore, we require our recommended model(s) to work
with limited data, especially in real-time. Thus, the fourth performance measure is that the
recommended model should be highly compatible with TRANSCOM data and be able to predict
delay with some data missing.

4.2.5 Summary of model comparison

Impact duration prediction

For impact duration predictions, we compared models by checking if they meet the
performance measures of (3.2.1) operations vs. planning, (3.2.2) prediction of a single value
versus a range of values, (3.2.3) analytical versus data-driven and (3.2.4) compatibility with
TRANSCOM data.

It is apparent from Table 23 that most regression models and classification tree methods suffer
from low compatibility with TRANSCOM data. For Bayesian network models, although Ozbay
and Noyan (19) and Demiroluk and Ozbay (1) are found to have medium compatibility with
TRANSCOM data. However, due to the flexibility of Bayesian networks (BN), their model can
provide reasonable impact duration predictions with limited data information and missing
values. When more data becomes available, their model can update itself and provide updated
and reliable predictions. Wei and Lee (17) achieved an accurate impact duration prediction
through Artificial Neural Networks. Their model is highly compatible with the TRANSCOM
dataset and can deal with sequential data. However, their model is computationally expensive
and that may lead to a low prediction frequency and cannot be used for real-time operations.
Khattak’s model (8) reported a reasonable MAPE as 37%, and the model can deal with
sequential data and is highly compatible with the TRANSCOM dataset. Since it is a regression
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model, it requires low computational effort and can provide a prediction for less than 5
minutes. However, its actual accuracy for complex networks and traffic conditions is not tested
using extensive field data. Qi and Teng (23) proposed a hazard-based method and reported to
provide better accuracy as more data becomes available in a time sequence. Their model is
highly compatible with the TRANSCOM dataset and requires low computational effort.

Table 23 Comparison results of impact duration prediction models.

Model Operation Sequential/one TRANSCOM Checklist —
s use? -time model compatibilit

y

Regression  Khattak et Yes Sequential Low @ @
models al., 1995
(1.1.1)

Garib et No One-time Medium @
al., 1997
(1.1.2)

Peeta et No One-time Low @
al., 2000
(1.1.3)

Khattak et Yes Sequential High @@@
al., 2016
(1.1.4)

Yu and Xia, No One-time Low @
2012
(1.1.5)

Weng et No One-time Low @
al., 2015
(1.1.6)

Classification Ozbay and Yes Sequential Low @@
Tree Kachroo,
Methods 1999
(1.2.1)

Smith et No Sequential Low @
al., 2002
(1.2.2)

Knibbe et No Sequential Low @
al., 2006
(1.2.3)
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He etal.,, Yes Sequential Medium @@@
2013(1.2.4)

Zhan et al., Yes Sequential Low @@
2011
(1.2.5)

Artificial Wei and Yes Sequential High @@@
neural Lee, 2007
network (1.3.1)

Park et al., Yes Sequential Medium @@@
2016
(1.3.2)

Bayesian Ozbay and Yes Sequential Medium @@@
networks Noyan,

2006

(1.4.1)

Boyles et Yes Sequential High @@@
al., 2007

(1.4.2)

Jietal., No Sequential Low @
2008
(1.4.3)

Shen and No Sequential Low ®
Huang,
2011
(1.4.4)

Demiroluk Yes Sequential Medium @@@

and Ozbay,
2014
(1.4.5)

Hazard- Qi and Yes Sequential High @@@

based model Teng, 2008
(1.5.1)

SVM Yuetal., No One-time Low @
2016
(1.6.1)

Traffic delay estimation

For traffic delay estimation models, we compared models by checking if they meet the
performance measures of (3.2.1) operations vs. planning, (3.2.2) prediction of a single value
versus a range of values, (3.2.3) analytical versus data-driven and (3.2.4) compatibility with
TRANSCOM data.
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Different from analytical delay prediction models, data-driven models can learn the features
from real-time data and generate reliable predictions as long as the models are well
trained/customized. Hojati’s model (42) can quantify the increase in travel time due to the
occurrence of non-recurrent incidents by learning standard travel speed profiles and comparing
them with incident-based travel speed profiles. However, Hojati’s model cannot predict travel
times in the presence of incidents. The hybrid ARIMA model proposed in (47) is able to predict
travel times with particular timestamps after the occurrence of an incident. However, it cannot
generate a range of predicted travel times. For queue length estimation, we identified three
methods presented in (45), (46), and (3). All of them employed machine-learning techniques
and can identify affected road segments due to the presence of an incident. However, certain
important drawbacks exist in Martino’s (45), and Yue’s (46) model. Martino’s model focused
only on special events such as sports events and concerts. Substantial additional effort will be
required if one wants to extend this model to other types of non-recurrent incidents. Yue’s
model is not directly used for prediction purposes. It is, however, possible to borrow the idea of
defining the impacted roadway segments and adapt it to TRANSCOM'’s database to estimate
new predictive models. Ghosh’s (3) model is used directly for predicting queue length of non-
recurrent incidents, and this model can be re-estimated with TRANSCOM data for operations
use. Yu’s model (2) can provide real-time travel time predictions after the occurrence of non-
recurrent traffic incidents. Their model achieves the highest accuracy among all reviewed
models for traffic delay estimation/prediction. One added advantage of this model is that it was
trained and tested with 5-minute link travel time data which makes it promising in terms of
compatibility of its findings given the similarity of TRANSCOM travel time database.

Table 24 Comparison of traffic delay estimation/prediction models.

Model Operations  Analytical A range TRANSCOM Checklist
use? or data- orsingle Compatibility
driven value
Khattak et Yes Analytical Single Low @@@@
al., 2012 value
(2.1.1)
Lietal, Yes Analytical Range Low OOGG®O
2006
(2.1.2)
Cassidy Yes Analytical Single Medium OG0
and Han, value
1993
(2.1.3)
Jiang, 1999 Yes Analytical Single Medium @@@@
(2.1.4) value
Chien and Yes Analytical Single Low @@@@
Schonfel, value
2001
(2.1.5)
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Jiang and Yes Analytical Single Low @@@@
Adeli, 2003 value
(2.1.6)
Chitturi et Yes Analytical Single Medium @@@@
al., 2008 value
(2.1.7)
Ramezani Yes Analytical Single Low @@@@
and value
Benehokal,
2011
(2.1.8)
Ullman and No Analytical Single Low @@@@
Dudek, value
2003
(2.1.9)
Garibetal., Yes Data-driven  Single Low @@@
1997 value
(2.2.1)
Hojati et Yes Data-driven  Single High @@@@
al., 2016 value
(2.2.2)
Javid et al., Yes Data-driven Single High @@@@
2018 value
(2.2.3)
Caceres et Yes Data-driven Range High @@@@@
al., 2016
(2.2.4)
Martino et No Data-driven Single High @@
al., 2019 value
(2.2.5)
Yue et al., No Data-driven  Single High @@
2017 value
(2.2.6)
Panetal., Yes Data-driven  Single High @@@@
2012 value
(2.2.7)
Ghosh et Yes Data-driven  Single High O®0O
al., 2017 value
(2.2.8)
Chen and Yes Data-driven Range High @@@@@
Rakha,
2014
(2.2.9)
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Yuetal., Yes Data-driven  Single High @@@@

2018 value
(2.2.10)

4.3 Final model recommendation

During the literature search process, we aimed to find a model that can both provide real-time
impact duration prediction and traffic delay prediction/estimation as well as queue length
prediction. However, as a result of the detailed review of the existing literature, we found that
no single model is able to predict impact duration, traffic delay, and queue length at the same
time. Moreover, we could not find models that are currently used by operations staff for real-
time operations. Therefore, we classified and then reviewed models for impact duration
prediction, traffic delay prediction/estimation, and queue length prediction seperately.

After comparing models in detail in the light of the feedback obtained from interviews, we
recommend three separate models. Specifically, we recommend one approach for impact
duration prediction, one approach for incident delay estimation/prediction, and one for queue
length prediction. Table 25 shows a summary of our recommended models.

The approach recommended for impact duration prediction is the Bayesian network approach
proposed by Demiroluk and Ozbay (1) since it is the most appropriate model for use in real-time
operations. Although the current TRANSCOM database does not contain all the needed data to
calibrate the parameters of this model, to the best of our knowledge, several TRANSCOM
agencies such as NJ Turnpike Authority and NY Thruway Authority collect the missing
information. Thus, this model can be estimated in a limited fashion to test its accuracy and
usefulness. This model can also deal with incident data becoming sequentially available during
the incident management operation, have reasonable accuracy, and very low computational
cost. Moreover, this model covers most of the requirements identified in the interview checklist
shown in Table 22. For traffic delay estimation/prediction, we recommend Yu’s model (2) due
to its capability of online prediction and high prediction accuracy. Moreover, this model has
automatic calibration which is convenient for re-calibration. Finally, for the queue length
prediction, we recommend Ghosh’s model (3) for predicting real-time queue length with
reasonable accuracy using TRANSCOM'’s travel time data only.

Table 25 Summary of recommended models

Model Operations TRANSCOM %Checklist Highlights
use? Compatibility Satisfaction
Demiroluk Yes Medium 100% Bayesian network,
and Ozbay, interpretable, adaptive
2014 (1.4.5) learning, real-time
prediction, operations
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Yu et al., 2018 Yes High 71% Time-series (RNN), travel
(2.2.10) time prediction, deep
learning model, high
accuracy, reliable

Ghosh et al., Yes High 100% Queue length prediction,
2017 (2.2.8) machine learning model,
real-time, operations,
reliable

4.4 Comparison of TRANSCOM data and data needs of recommended models

In this section, we will compare TRANSCOM current data availability with the data needs of our
recommended models.

Demiroluk and Ozbay’s model (2014) (1)

Demiroluk and Ozbay’s model (1) was developed with incident data obtained from
transportation agencies in New Jersey. Incident and operations data such as the number of
response agencies involved and the number of vehicles involved were used in the development
of this model. No such information is currently available in the TRANSCOM dataset, as shown in
Table 26. Therefore, we will not be able to calibrate this duration model using all of the
variables employed in the original model. However, due to the flexibility of Bayesian networks
(BN), we can remove unavailable variables in the TRANSCOM data and calibrate BN model using
the available information. As shown in Table 26, both weather and pavement data in the
TRANSCOM database have a lot of missing values (more than 99%). Therefore, we can calibrate
the BN model using attributes/variables that have a small number of missing values, such as
time data (“Month”, “DayofWeek”, “TimeofDay”), incident data (“CrshType”) and location data
(“Location”, “Distance”). It is important to note that the shaded area in Table 26 represents the
additional variables needed to be collected by TRANSCOM in the next stepto improve the
capability of this model. With the collection of these variables, we can replicate the settings of
Demiroluk and Ozbay’s model (1) and provide reliable predictions. Their model can also provide
duration prediction with limited data information. Therefore, at an early stage of a traffic
incident, this model can work and provide a short-term prediction with missing data. The model
becomes more accurate as it gets more data from the response team at the scene of an
incident. This model can work with missing data and provide a predicted distribution of impact
durations. Therefore, this model will provide more reliable prediction if and when more
detailed incident information becomes available.

It is also important to note that this model can produce the prediction of incident clearance and
incident recovery times. The incident clearance time can be determined directly by the start
and end time of a reported incident. However, there is no direct way to determine the incident
recovery time through the reported start and end time of a traffic incident. Instead, the
recovery time needs to be estimated by comparing the travel time under incident conditions
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and normal conditions. In this study, we reviewed and proposed a way of estimating incident
recovery time using the approach described in Section 1.7.

Table 26 Detailed data needs from model and its compatibility with TRANSCOM data
Variables Descripti TRANSCOM File Field name Missin
data name g rate

Weather
data

Time Month Month of Highway StartDateTime 0.02%
data year Events /
EndDateTime
TimeofDay  Time of Highway StartDateTime 0.02%
Events /
EndDateTime

Incident
data

Location
data
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Location Link ° Event- Linkld 0%
where Link ID
incident mapping
is located
Distance Distance ° Highway PointLAT/PointLON 0.02%
from the Events
closest
exit
Light Light Lighting
data condition
S
The shaded green area represents the data that is not currently collected or collected rarely by
TRANSCOM and needs to be collected in the future to improve model estimation and prediction. “e”
represents the data currently available in the TRANSCOM database.

Yu’s model (2017) (2)

Yu et al (2) proposed two neural network models for travel time prediction. The format of the
travel time dataset they used is similar to the TRANSCOM dataset’s format. Their model
requires time data (“Month”, “DayofWeek”, “TimeofDay”), incident data (“IncidentType”),
location data (“Direction”, “Location”) and travel time data (“Travel Time”) as input variables.
Specifically, the model requires travel time data with 5-minute aggregation, TRANSCOM can
provide travel time with aggregation as small as 2-minutes. As shown in Table 27, TRANSCOM
provides available data for all these required variables with a small percentage (less than 1%) of
missing values. Therefore, we will be able to calibrate and validate the model using the
provided TRANSCOM data.

Training and calibrating this model requires relatively substantial computational resources. We
recommend implementing this model if high-performance computing resources that exist at
NYU are available for initial training, calibration, and testing. Please note that this is only
required for initial calibration and validation and these models when successfully calibrated can
be operationalized in a standard PC for day to day usage.

Table 27 Detailed data needs of Yu’s model and its compatibility with TRANSCOM data
Variables Description TRANSCOM File Field Missing
data name name rate
Time Month Month of year ° Link hhmm 0%
data Travel
Time
DayofWeek Day of week ° Link hhmm 0%
Travel
Time
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TimeofDay Time of day ° Link hhmm 0%

Travel
Time
IncidentType  Type of incident ° Highway eventType 0.02%
data Events
Location [bIIT=ledle]y! Incident ° Highway Direction 0.02%
data direction Events
Location Incident location ° Event- Linkld 0%
Link ID
mapping
Travel time Link travel time ° Link Real- 0%
(5 minutes Travel time_tt
aggregation) Time

“@” represents the data currently available in the TRANSCOM database.

Ghosh’s model (2017) (3)

Ghosh et al. (3) proposed a cascaded classification-regression model to predict the queue
lengths. They adopted travel time data having a similar format to the format of TRANSCOM
dataset. Their model requires time data (“Month”, “DayofWeek”, “TimeofDay”), incident data
(“IncidentType”), location data (“Direction”, “SegementLength”, “Shoulder”, “Total_Lanes”,
“Num_Lanes”, “Type_Lanes”) and travel time data (“Travel Time”). Table 28 shows a relatively
high percentage of missing values (45.29%) in the data for variables “Shoulder”, “Num_Lanes”
and “Type_Lanes”. Therefore, there is a potential need to remove data records with missing
values and calibrate the model using the rest of the available data. Therefore, through proper
data processing, we can calibrate and validate their model using available TRANSCOM data.

Table 28 Detailed data needs of Ghosh model and its compatibility with TRANSCOM data

Variables Description TRANSCOM File Field name Missing
data name rate
Time Month Month of ° Link hhmm 0%
data year Travel
Time
DayofWeek Day of week ° Link hhmm 0%
Travel
Time
TimeofDay Time of day ° Link hhmm 0%
Travel
Time
IncidentType Type of ° Highway eventType 0.02%
data incident Events
Direction Incident ° Highway  Direction 0.02%
data direction Events
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SegmentLength Length of ° Link length 0%

segment Shapefile
Shoulder Whether ° Highway LanesDetail 45.29%
the Events
shoulder is
involved
Total_Lanes Total ° Link phys_lanes 0%
number of Shapefile
lanes
Num_Lanes Number of ° Highway LanesDetail 45.29%
affected Events
lanes
Type_Lanes Type of ° Highway LanesDetail 45.29%
affected Events
lanes
Travel Travel time Link travel ° Link Real- 0%
time time (5 Travel time_tt
data minutes Time

aggregation)

The shaded green area represents the data that is not currently collected or collected rarely for by
TRANSCOM and needs to be collected in the future to improve model estimation and prediction. “e”
represents the data currently available in the TRANSCOM database.

5. System requirements for an ideal predictive tool

Based on the assessment of the needs previously described in this report, it can be claimed that
TRANSCOM and their member agencies must collaborate and adopt a computerized map-
based/table-based tool or a data-feed service that is part of an implementation framework that
can employ TRANSCOM'’s real-time data feed to provide operations personnel with predictive
duration/delay/ queueing information in the presence of non-recurrent delays. This section lays
out the desired functional requirements of this predictive framework that can be implemented
as an operations software.

The main goal of this section is thus to clearly describe the functionalities of an “ideal data-
driven predictive non-recurrent duration/delay estimation framework” based on the
outcomes of the previous literature study. The framework presented in this section needs to be
integrated into a map-based/table-based software tool or a data-feed service that incorporates
all the functionalities that are deemed essential for the operations of non-recurrent traffic
events.

Figure 31 illustrates the framework of an ideal computerized tool for helping operate non-
recurrent traffic incidents/events. As seen in the figure, all current and historical traffic incident
information and travel time data from TRANSCOM and other agencies are fed to an extended
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traffic database for calibration and validation purposes. This extended database should be
hosted at a server within the agency and automatically extracted to an online database via
periodic XML feeds. The information within this online database can then be reached, queried,
and used via a map-based/table-based software interface or a data-feed service. This map-
based/table-based software interface or data-feed service can be built into TRANSCOM'’s
software platform and accessed by only authorized users.

Travel time, incident

>

>

Data information from Traffic database

TRANSCOM/agencies
Disseminate Automatic
results to agencies data
extraction

Query inputs

& =

Upload outputs

L 3

Analytics server
Map-based

interface/table-based
interface/data-feed

Figure 31. Framework of ideal predictive non-recurrent estimation delay tool.

The following subsections briefly outline the desired functionalities of the proposed ideal
predictive non-recurrent estimation delay tool.

5.1. Maintain a database of non-recurrent events

This tool should be able to store and display detailed information about all historical and
current non-recurrent traffic events (accident, construction event, special event). Information
should include the event ID, description, event type, number of lanes affected, type of lanes
affected, event start and end time, event location (coordinates, link ID), and the division of
operations information.

This tool should provide a map-based/table-based interactive user-interface to allow the ease
of entering input information and visualizing outputs for users. For example, on the front-end,
when a traffic incident is reported, a traffic operator should be able to enter necessary
information via a user-interface and visualize the location of this incident on the map. On the
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back-end, the online traffic database should be able to query the inputs from operators and
match the link ID of the incidents. The map-based user-interface should also display outputs
such as estimated delay, duration and queue length on the map. This functionality provides

operators with a good representation of predicted results and a better understanding of the
impact caused by current traffic incidents.

This tool should also be able to store and update a certain period of recent real-time travel time
information. For example, when a traffic incident is reported using the tool, the traffic database
should automatically acquire a certain period of recent travel time data needed for prediction
functions.

The traffic database should also automatically calculate and then disseminate the model
predictions such as impact duration, delay and queue length to relevant stakeholders.
Moreover, the database should also be designed in a way that it can easily be integrated with
TRANSCOM'’s OpenReach database as well as its current user interface.

5.2. Traffic impact duration prediction

It is vital to provide a real-time prediction of traffic impact duration for a non-recurrent traffic
incident. As outputs of this functionality, this tool must provide online and reliable predictions
for the clearance and recovery times of a non-recurrent traffic event. When an incident is
reported, this tool must provide a short-term prediction of incident duration with limited
information such as incident type, start time and location. As the incident clearance operation
progresses, additional information acquired by the operator will be entered and an updated
predicted impact duration will be calculated and made available to traffic operators.

It should be noted that the successful implementation of the duration prediction functionality
significantly depends on the available incident information. As mentioned in previous sections,
the minimum required parameters for traffic impact duration prediction include weather
conditions, time of the incident, incident location (coordinates, link ID) and incident type. These
parameters are used to predict the duration of traffic incidents at a very early stage. In order to
provide updated and more reliable predictions of traffic incident duration, this functionality
requires additional data such as the existence of property damage, injuries and fatalities,
existence and number of disabled vehicle, whether or not road repair/work is involved, the
number of vehicles involved, number of lanes closed, whether or not a police department is
involved and, whether or not a tow truck or fire truck is involved.

Therefore, this functionality requires the acquisition of real-time incident scene data that needs
to be uploaded continuously to obtain updated prediction results. As per the interviews, the
ideal tool requires this functionality to provide updated predictions every 5-minutes. Moreover,
this functionality should provide an immediate update of its prediction when there are major
changes in terms of the real-time incident information.
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In summary, the outputs of this functionality include the initial predicted incident clearance
time, updated predicted incident clearance time and recovery time. It is important to note that
incident clearance time can be calculated directly through the reported start and end time.
However, there is no direct way to calculate incident recovery time from the reported historical
data because unlike incident clearance times, recovery times are not recorded. One alternative
way to determine the recovery time is to compare travel time observed during the incident and
normal traffic conditions (see Section 1.7) and try to indirectly identify incident recovery times
(time to normal flow). Table 29 shows a summary of the system requirements of this
functionality.

Table 29. Summary of system requirements for traffic impact duration prediction.
Minimum: weather conditions, day and time
of the incident, incident location, incident
type
Ideal: existence of property damage, injuries
and fatalities, existence and number of
disabled vehicles involved, existence of road
repair/ work zone, the number of vehicles
involved, number of lanes closed, whether or
not police department is involved, whether
or not tow / fire truck is involved

Incident clearance time
Model outputs . L
Incident recovery time

Model inputs

Time from incident detection to the first 5 minutes (immediate if major changes),
prediction work with limited information
5 minutes, update as soon as new and
Time interval to next updated prediction significantly different information becomes
available

* Incident recovery time needs to be indirectly estimated through travel time data. Thus, it will
be an approximation of the actual recovery time since ground truth data that can be used to
validate the exact recovery time does not exist. A heuristic method to estimate recovery time
from observed travel times and recorded clearance times need to be developed as part of this
functionality. However, the details of this approach will require additional work that is beyond
the scope of this work. It is also important to note that physical queueing models cannot be
used due to the absence of volume data required by all the queuing models.

5.3 Traffic delay estimation/prediction

It is important to provide real-time estimation/prediction of the delay that would be caused by
the non-recurrent traffic events. The outputs of this functionality include incident induced
travel time prediction and queue length prediction.
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It should be noted that the successful implementation of this functionality depends greatly on
the available real-time link travel times as well as details of the incident. As mentioned in the
previous subsection, this functionality requires recent real-time travel time data as the main
input. For example, a successful prediction of one-hour after the occurrence of a traffic incident
may require the past one-week travel time data. Such data should be automatically extracted
from the historical traffic information database and updated in the online database.

The required parameters for travel time prediction include 5-minute link travel time data,
incident type, day and time of the incident, incident direction and incident location
(coordinates, link ID). These parameters are used to estimate travel time distribution after the
detection of a traffic incident. For queue length estimation/prediction, the required parameters
include day and time of the incident, incident type, incident direction, length of the segment
where the incident occurred, whether or not shoulder is involved, number of lanes affected,
type of lanes affected and 5-minute link travel times. It is important to note that this tool will
only focus on predicting queues on highways only not on urban streets due to their inherent
complexities.

In summary, the outputs of this functionality include predicted link travel time after the
detection of a traffic incident, the average estimated traffic delay and queue length estimation
for individual links. It should be noted that real-time prediction of travel time and queue length
might require a processing time which may be up to 5 minutes. Users will obtain predictions
once they input incident related data into the tool through the use of a map-based interface
mentioned previously in this section.

Table 30 shows a summary of the system requirements for this functionality.

Table 30. Summary of system requirements for traffic delay estimation/prediction.
Travel time prediction: 5-minute link travel
time data, incident type, day and time of the
incident, incident direction and incident
location
Queue length estimation: day and time of
Model inputs the incident, incident type, incident direction,
length of the segment where incident
happens, whether or not shoulder is
involved, number of lanes affected, type of
lanes affected and 5-minute link travel time
data
Post-incident travel time
Model outputs Average traffic delay
Link-based queue length
Travel time prediction: up to 5 minutes.
Queue length estimation: 5 minutes, work
with limited information

Time from incident detection to the first
prediction
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5-minutes, update as soon as new and
Time interval to next updated prediction significantly different information becomes
available

6. A preliminary assessment of development, calibration and
implementation efforts required for recommended models

In Section 4.4, we compared TRANSCOM data with the data needs of our recommended
models. With the comparison between TRANSCOM data and recommended data needs, we
identified the efforts for data preparation, cleaning, and mining in order to calibrate each
recommended model in this section. Moreover, we also identified the time and efforts for
model development and training for each recommended model.

At the very end, users will have a clear understanding of the potential time and efforts for the
development, calibration, and implementation of these recommended models.

Demiroluk and Ozbay’s model (2014) (1)

In this subsection, we will describe the data preparation effort in order to calibrate and
implement Demiroluk and Ozbay’s model. Specifically, we include the efforts of collecting
additional data compared to available TRANSCOM data, data processing, and model training. At
the end of this subsection, we will also provide a rough estimated time of applying data
preparation and calibration respectively.

Data preparation and calibration

The data preparation effort will start with additional data collection. As shown in Table 31, we
carefully compared TRANSCOM data with the data needs of this recommended model and
determined what additional variables are needed for calibrating this duration prediction model.

Table 31. Data collection required for additional variables needed by this model.

Variables Description

Incident data NumFat Number of fatalities

Numinj Number of injuries

VehNo Number of vehicles inolved

Roadwaydamage Presence of roadway
damage

NumTrkinv Number of trucks involved

Light data Light Lighting conditions
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Table 32 shows data processing and preparation effort required to calibrate Demiroluk and
Ozbay’s model. As shown in Table 32, the minimum required variables for calibration include
weather conditions, day and time of the incident, incident location (coordinates, link ID) and
the type of incident. The ideal variables required by the calibration include the existence of
property damage, injuries, and fatalities, the number of vehicles involved, number of trucks
involved, pavement conditions, distance from the closet exit, light conditions.

Table 32 also shows minimum amount of data required for calibration and implementation.
Specifically, calibrating this model requires traffic incident data for a period of at least six
months or more. To implement this model in real-world cases, traffic operators will need to
input the required variables for the specific incident.

Table 32. Data preparation effort required for model calibration and implementation.
\ AT RYETIET o) CEN G VTG B el iect o] E1dlesM Weather conditions (snow, rain), time and
day of incident, incident location
(coordinates, link ID), incident type
[o[EIRVETIET o) (ST VTR Rlo] el [ls] =ile)a Existence of property damage, injuries and
fatalities, number of vehicles involved,
number of trucks involved, pavement
conditions, distance from the closet exit, light
conditions

Minimum amount of data needed for Wl NI RIC iilRlole (iAo FL

calibration

\Tallaa P TR Pl pate)t ol ato) o EieNa [ (o Kol M i=E|BN  Details of the current traffic incident in real-
world implementation iyl

As mentioned in the data analysis section (Section 3), a large amount of noise exists in the raw
dataset. Therefore, some potential efforts of data processing are listed:
= Remove the data with missing values from more than 60% of all the data
= Match event data with event action data via event ID
= Match link travel time with traffic incidents by link ID and coordinates
= Convert “type of affected lanes” to “number of lanes affected”
= Calculate incident clearance time based on reported start and end time of the
incident
= Calculate incident recovery time based on the difference of mean and variance
of normal traffic speed and reduced traffic speed
= QOther data cleaning tasks on an as needed basis
As a preliminary estimate, data processing can be as long as 6 months depending on the
specifics of the databases that need to be processed and combined. The data processing takes
time when received volume of data is large and the time of downloading and acquiring data
may be long. Moreover, the research team may have to create a database to maintain all
received data and update it when there are changes in data format. For example, the research
team may receive and process the dataset with variables that are minimum required for
calibration. When more data information mentioned in ideal variables required become
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available, the research team may need to update the database and process the updated
dataset. Furthermore, the research team has not worked on how to filter the erroneous data
which may require additional work and literature search.

This model will require a minimum time of six months for model training, calibration, validation,
and computer implementation. However, one advantage of this model is its self-learning
capability, which avoids the need for re-calibration. As per the interview results, the desired
accuracy of calibration between ground truth data and trained prediction results is +/- 10%
error and this model will re-calibrate automatically to maintain this level of accuracy. Table 33
shows a summary of estimated time for data processing, model calibration, training, and
computer implementation.

Table 33. Estimated time for data processing and calibration efforts for Demiroluk and Ozbay’s
model.

Estimated minimum time for data processing HsNiglelgi4a}

Estimated minimum time for model training,

calibration, validation, and computer [NeNilelsida}5
implementation’?

N[RN[R EeE [T =1i=le f  Automatic calibration
HEIR I A R CWIER +/- 10% error

Yu’'s model (2017) (2)

In this subsection, we will describe the effort of data preparation in order to calibrate and
implement Yu’s model (2). As mentioned above, the data needs of this model are highly
compatible with TRANSCOM’s available data. Therefore, there is no need to collect additional
variables for further calibration. Instead, we mainly describe the efforts of data processing and
model training. At the end of this subsection, we will also provide a rough estimated time of
applying data preparation and calibration, respectively.

Data preparation and calibration

Table 34 shows the required variables in order to calibrate Yu’s model (2), including 5-minute
link travel time data, day and time of the incident, incident type, direction of the incident, and
incident location. Moreover, Table 34 also mentions the minimum data required for calibration
and implementation. Specifically, calibrating this model requires at least one year of historical
traffic incident data. For a computer implementation of this model, we will need the actual
coding of this specific calibrated, trained and validated model to make it operational in the
sense of obtaining 1-week travel time data from the previous week along with the details of the
actual traffic incident from the Analytics Server shown in Figure 31.

! Computer implementation refers to the actual coding of the specific calibrated, trained, and validated predictive
model to make it operational in the sense of obtaining real-time data from the Analytics Server shown in Figure 31
and passing its predictive output to the desired user interface in the desired format.
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Table 34. Data preparation efforts required for model calibration and implementation.
\ATa T RYETIET o) R T R eI eE o] 1o s8  5-minute travel time data, day and time of
the incident, incident type, direction, incident
location

1-year of travel time data and traffic incident
data

1-week of travel time data from the previous
Il EnEniElilead week, details of current incident

As mentioned in the data analysis section (Section 3), there is a large amount of noise in the

raw dataset. Therefore, efforts required for data processing and preparation are listed below:

= Remove the data with missing values from more than 60% of all the data

= Match event data with event action data via event ID

=  Match link travel time with traffic incidents by link ID and coordinates

= Convert “type of affected lanes” to “number of lanes affected”

= QOther data cleaning tasks on an as-needed basis
= Need high-performance computing resources for model training

As a preliminary estimate, data processing can be as long as 3 to 6 months depending on the
specifics of the databases that need to be processed and combined. It is important to note that
as model calibration requires data from different sources to be in the same format, a number of
scripts that will automate the process have to be developed. However, for future re-calibration
of the same model, the time it takes to process the new data will be significantly less than the
original data processing effort since the developed scripts can be re-used as long as the format
of the new datasets is not significantly different from the original one. In other words, once the
initial data processing and preparation task is completed, the development team can re-use the
same scripts to process new data for re-calibration purposes. However, it is important to note
that if the data format changes, it will take some time to modify the scripts in order to process
the new data.

For model training, calibration, validation, and implementation efforts, this model require data
covering a period of 6-9 months. However, this model is capable of automatic re-calibration,
which avoids additional manual re-calibration. In other words, as long as new incoming data is
ready for re-calibration, this model is able to re-calibrate itself and find the optimal training
accuracy (+/- 5%). Table 35 shows the estimated required time and effort for data processing,
model calibration, and training? and computer implementation.

Table 35. Estimated time for data processing and calibration efforts Yu’s model.

Estimated minimum time for data processing BRI Ayl 11

2 It is important to note that all the estimation of required effort in terms of time assumes a high level of familiarity
with the TRANSCOM data as well as the specific aspects of the model to be calibrated. It will take considerably
longer time if there is a need for learning specific aspects of each model and data needed to calibrate and
operationalize them.
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Estimated time for model training, calibration, MeEElifelalial
validation and implementation

N[l BTl o s =S| [lo] =1 {=leF  Automatic calibration
HEIR- I CIaA e RN +/- 5% error

Ghosh’s model (2017) (3)

In this subsection, we describe the data processing and preparation effort required to calibrate
and implement Ghosh’s model (3). Similar to Yu’s model (2), the data needs of this model are
highly compatible with TRANSCOM'’s available data. Therefore, we mainly describe the efforts
of data processing and model training. At the end of this subsection, we provide a rough
estimate of effort in terms of time required for data preparation and calibration respectively.

Data preparation and calibration

Table 36 shows the required variables in order to calibrate Ghosh’s model (3), which include 5-
minute travel time data, day and time of the incident, incident type, direction, incident location,
length of segment, whether or not shoulder is involved, total number of lanes, number of
affected lanes, and type of affected lanes.

Moreover, Table 36 shows the minimum amount of data required for calibration and
implementation. Specifically, calibrating this model requires at least 6-month of traffic incident
data. For the real-time implementation of this model, one-week-long travel time from the past
week along with the details of the current incident are required.

Table 36. Data preparation efforts required for model calibration and implementation.
\EIIEL SN R V= Riel et le]=1ile]a® 5-minute link travel time, day and time of the
incident time, incident type, direction,
incident location, length of segment, whether
or not shoulder is involved, total number of
lanes, number of affected lanes, type of
affected lanes

6-month of travel time data and traffic
incident data

1-week of recent travel time data, 1 real-time
incident with details

As mentioned in the data analysis section (Section 3), there is a large amount of noise in the
raw dataset provided to the research team by TRANSCOM. Therefore, substantial data
processing effort listed below is required:

= Remove the data with missing values from more than 60% of all the data

= Match event data with event action data via event ID

= Match link travel time with traffic incidents by link ID and coordinates
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= Match event data with shapefile via link ID
= Convert “type of affected lanes” to “number of lanes affected”
= QOther data cleaning tasks on an as-needed basis

As a preliminary estimate, data processing can be as long as 3 to 6 months depending on the
specifics of the databases that need to be processed and combined. However, it is important to
note that as model calibration requires the same data formats, the time it takes to process the
data for re-calibration efforts will be decreased. In other words, once the first data processing is
finished, the research team can adopt the same computation scripts to process any further
incoming data for re-calibration purposes.

For model calibration, training, validation and implementation efforts, this model will require a
period of 6-9 months for model training, calibration., and computer implementation Moreover,
this model needs to be re-calibrated every year in order to keep up-to-date roadway
conditions. This model is required to have a +/- 5% error between ground truth data and
trained prediction results. Table 37 shows the estimated time and efforts for data processing,
model calibration, and training.

Table 37. Estimated time for data processing and calibration efforts Ghosh’s model.
3 to 6 months
Estimated time for model training, calibration, R leliH
validation, and implementation

N[RN[R ReE| [T =T FN Yes, every 1 year.
HEIG AR R AR +/- 5% error

7. Timeline of the system development

Based on the literature review, detailed data analysis and designed system requirements for
the ideal predictive incident delay estimation tool, we suggest a tentative timeline for the
model development effort:

1. Immediate action (if approved): start focusing on the development of a delay prediction
model based on the models recommended in this study, availability of data, and needs
identified from surveys.

2. Longer-term action (2-3 years) When more data becomes available, consider the
development of a duration prediction model based on the model recommended in this report.

Furthermore, based on the development efforts, we propose a step-wise model development
approach3:
= Stepl: Develop link-based delay / queue prediction models, validate their
usefulness under real-world conditions, and integrate them in a software
environment where operators can start experimenting with them. (Year 1)

31t is important to note that this step-wise approach will be revised based on the availability of new data as well as
the success of each step in terms of the adoption of each model by member agencies.
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= Step 2: Develop corridor-based delay / queue prediction models and validate
their usefulness under real-world conditions and integrate them in a software
environment where operators can start experimenting with them. (Year 2)

= Step 3: Develop alternative route-based delay / queue prediction models and
validate their usefulness under real-world conditions and integrate them in a
software environment where operators can start experimenting with them.
(Year 3)

= Step 4: Consider development of duration prediction models and integrate them
in a software environment where operators can start experimenting with them.
(Year 3)
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Appendix
Table 38. Field description of Highway Events data.
I\sl:;. Field Name Description Format M;sas;lgg Example
1]Id Unique identifier of event
String 0.02% | ORI171242207
2 | AssociatedEventID Associated schedule/plan Event
ID. String 82.11% | ORI171242207
3 | EventClass Suggest a class of an event. List of
values are:
0 —incident
1 — construction
2 —special event Integer 0.02% 0
4 | eventstatus Status of an event
List of values
0 - New
1 - Updated
2 - Closed
255 - Scheduled
Integer 0.02% | Closed
5 | StartDateTime Start date - time of event Datetime 0.02% 12/25/17 1:39:00 AM
6 | EndDateTime End date - time of event
Datetime 0.03% 1/1/18 1:54:21 AM
7 | LastUpdate Last updated date-time of an
event Datetime 0.02% 12/25/17 1:39:40 AM
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8 | SummaryDescription Description of an event MTA Bridges & Tunnels: Truck restrictions on
I-495 westbound near Greenpoint Avenue
(New York) Trucks over 12 feet restricted
from using the Queens Midtown Tunnel. All
vehicles over 12 feet must use alternate
String 0.02% | route.
9 | Organization_ShortName Reporting organization Name
String 0.02% | MTA Bridges & Tunnels
10 | eventType Contains event type of current
event
String 0.02% | Disabled vehicle
11 | LanesTotalCount Total lanes of roadway Integer 99.29% 4
12 | LanesAffectedCount Lanes affected by this event
Integer 95.15% 2
13 | LanesDetail Contains lane affected detail.
Example, all lanes at least one
lane closed for repairs String 45.29% | right lane
14 | LanesStatus Contains lane status
Example, open close traffic
disruption String 45.59% | blocked
15 | Facility Event location facility name String 0.02% | 1-495
16 | Direction Contains Event direction String 6.38% | westbound
17 | City City name based on Event String 12.48% | New York
18 | County County name based on Event String 0.64% | Queens
19 | State State abbreviation of Event
Example,
NJ — New Jersey
PA — Pennsylvania String 0.02% | NY
20 | PrimaryCity Primary city name of Event String 13.12% | New York
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21

SecondaryCity

Secondary city name of Event

String

76.52%

Weehawken Twp

22

CityArticle

Article used with City name
Example,

at

around

between

String

38.98%

near

23

PrimaryMarker

Primary mile marker

Float

64.19%

1.2

24

SecondaryMarker

Secondary mile marker

Float

78.70%

0.5

25

MarkerArticle

Article used with mile marker
Example,

at

around

between

String

100.00%

at

26

MarkerUnits

Unit of measurement specified in
mile marker

String

64.19%

mi

27

PointDatum

Any reference point/co-ordinates
from which measurement may be
taken. Here the default Point
Datum is NAD83(North American
1983 Datum)

Float

0.02%

NADS83

28

PointLAT

Latitude of an event

Float

0.02%

40.73690033

29

PointLON

Longitude of an event

Float

0.02%

-73.9312973

30

PrimaryLoc

Primary Location of an event
Example,

Mile Post: 8.5

Exit: US 1 NORTH - MORRISVILLE
{# 5A}

(Beginning of | - 295)

String

1.41%

Greenpoint Avenue

31

Secondaryloc

Secondary Location of an event

String

59.16%

New Jersey Side - Center Tube
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32 | LocArticle Article used with Location of an
event
Example,
at
near String 38.49% | near
33 | Comments Comments about an event String 32.45% | until further notice
34 | EventTypeDesc Description of event type.
Example,
Highway String 0.02% | Highway
35 | EventimpactType Impact of an event
Example,
Major
Minor String 89.20% | Minor
36 | xcm_ShortDesc Description of an event MTA Bridges & Tunnels: Truck restrictions on
I-495 westbound near Greenpoint Avenue
(New York) Trucks over 12 feet restricted
from using the Queens Midtown Tunnel. All
vehicles over 12 feet must use alternate
String 0.02% | route.
37 | xcm_SortCategory Contains the combination of sort
order, sort weightage and event
type id as per defined in DFE
system
Example,
A040.200.196
Here, “A0” is prefix, “40” is sort
order, “200” is sort weightage and
“196” is an event type id String 0.02% | A020.400.255
38 | xcm_SortOrder Sort order of an event type as per
defined in DFE system
Integer 0.02% 20
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39

xcm_PresentationHint

Image file which contains the icon,
used for representing event on
Operations Map

String

0.02%

incident.png

40

OR_TrackingID

Open Reach Id of an event

String

0.02%

ORI-171242207

41

xcm_Source

Source name of an event
Example,
TRANSCOM-OpenReach

String

0.02%

TRANSCOM OpenReach

42

xcm_Local

Flag value with a value of either 0
orl.

0 means that an event is a public
event

1 means that an event is a local
event

Integer

0.02%

43

xcm_Transit

Flag value with a value of either 0
orl.

0 means that an event is a
highway event

1 means that an event is a transit
event

Integer

0.02%

44

xcm_FacilityShortName

Facility’s Short name where event
occurred.

Example,

[-295

String

0.63%

1-495

45

xcm_CountyTo

Affected County due to event

String

27.03%

Hudson

46

OR_ToPointLat

Affected “To” Point Latitude

Float

64.84%

40.765298

47

OR_ToPointLon

Affected “To” Point Longitude

Float

64.84%

-74.014992

48

xcm_EarliestScheduleStart

Earliest Schedule Start date-time
of an event

Datetime

100.00%

12/25/17 1:39:00 AM

49

xcm_LatestScheduleEnd

Latest Schedule End date-time of
an event

Datetime

100.00%

1/1/18 1:54:21 AM
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50

xcm_EventID

Combination of creation time and
reporting org id

Example:

2014081522113401104

Here,

“20140815221134"” is date in
format of yyyyMMddHHmMmss
“01104” is reporting org id

String

0.02%

2.01712E+18

51

xcm_ReportingOrgName

Reporting Organization name

String

0.02%

MTA Bridges & Tunnels

52

xcm_UpdateCount

Number of times events got
updated

Integer

0.02%

29

53

xcm_RaEventType

Event Type reference to Event
Archive System

Example,

roadway

vehicle fire

accident

String

0.02%

truck restrictions

54

xcm_IncExpEndDttm

Event’s expected end date-time

Datetime

0.10%

12/25/17 1:39:00 AM

55

xcm_CountyFrom

Affected “From” county name

String

0.58%

Queens

56

xcm_WeatherCondition

Weather condition during event

String

99.98%

sunny

57

xcm_PavementCondition

Pavement condition during event

String

100.00%

N/A

58

xcm_OtherinformationTwo

Additional Other Information
about event

String

100.00%

N/A

59

xcm_LaneDetails

Contains lane affected detail

String

89.74%

service road

60

xcm_Impact

Impact of event.
Example,
MAJOR

MINOR

String

89.22%

Minor
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61 | xcm_RespondingOrgName Organization who responded to
event String 100.00% | MTA Bridges & Tunnels
62 | xcm_IncidentOccured Date-time when event occurred Datetime | 100.00% 12/25/17 1:39:00 AM
63 | xcm_IncidentReported Date-time when event was
reported Datetime | 100.00% 12/25/17 1:39:00 AM
64 | xcm_IncidentVerified Date-time when event was
verified Datetime | 100.00% 12/25/17 1:39:00 AM
65 | xcm_ResponseldentifiedAndDispatched | Date-time when response was
identified and dispatched to event
location Datetime | 100.00% 12/25/17 1:39:00 AM
66 | xcm_AllLanesOpenToTraffic Date-time when all lanes were
open to traffic Datetime | 100.00% 12/25/17 1:39:00 AM
67 | eventDuration Duration of the event Datetime 0.02% | 7 -00:15
Table 39. Action type with type id.
id TypeName
0 | Verification
1 | Notification
2 | VMS
3 | HAR
4 | Diversion Route
5 | IMRT
6 | Crew
7 | State Police
8 | Other
9 | Fatality
10 | Construction
11 | HAZMAT
12 | Bridge Plates
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13

Buses Ordered

14

On-board Announcement

15

Station Announcement

16

Station Displays

17

Alternates

30

Event Created

31

Event Updated

32

Event Closed

33

Event Reopened

34

Event Copied To

35

Event Copied From

36

Event Spawned

37

Event Terminated

38

Event Archived

39

Event Modified

40

Event Prepopulated

50

Initial Event Snapshot

51

Event Update Snapshot

52

Event Closed Snapshot

53

Event Created Snapshot
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